/dev/cciss/c0d0
zur Verfügung; der Kernel in Wheezy änderte diesen Namen in die näherliegende Bezeichnung/dev/sda
, aber bei anderen RAID-Kontrollern kann es sich anders verhalten.
mdadm
zur Verfügung, mit dem RAID-Anordnungen erstellt und verändert werden können, wie auch Skripten und Hilfsprogramme, mit denen es in das übrige System integriert werden kann, einschließlich eines Überwachungssystems.
sdb
, 4 GB, ist vollständig verfügbar;
sdc
, 4 GB, ist ebenfalls vollständig verfügbar;
sdd
ist nur die Partition sdg2
(ungefähr 4 GB) verfügbar;
sde
, ebenfalls 4 GB, vollständig verfügbar.
#
mdadm --create /dev/md0 --level=0 --raid-devices=2 /dev/sdb /dev/sdc
mdadm: Defaulting to version 1.2 metadata mdadm: array /dev/md0 started. #
mdadm --query /dev/md0
/dev/md0: 8.00GiB raid0 2 devices, 0 spares. Use mdadm --detail for more detail. #
mdadm --detail /dev/md0
/dev/md0: Version : 1.2 Creation Time : Thu Jan 17 15:56:55 2013 Raid Level : raid0 Array Size : 8387584 (8.00 GiB 8.59 GB) Raid Devices : 2 Total Devices : 2 Persistence : Superblock is persistent Update Time : Thu Jan 17 15:56:55 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 Chunk Size : 512K Name : mirwiz:0 (local to host mirwiz) UUID : bb085b35:28e821bd:20d697c9:650152bb Events : 0 Number Major Minor RaidDevice State 0 8 16 0 active sync /dev/sdb 1 8 32 1 active sync /dev/sdc #
mkfs.ext4 /dev/md0
mke2fs 1.42.5 (29-Jul-2012) Filesystem label= OS type: Linux Block size=4096 (log=2) Fragment size=4096 (log=2) Stride=128 blocks, Stripe width=256 blocks 524288 inodes, 2096896 blocks 104844 blocks (5.00%) reserved for the super user First data block=0 Maximum filesystem blocks=2147483648 64 block groups 32768 blocks per group, 32768 fragments per group 8192 inodes per group Superblock backups stored on blocks: 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632 Allocating group tables: done Writing inode tables: done Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done #
mkdir /srv/raid-0
#
mount /dev/md0 /srv/raid-0
#
df -h /srv/raid-0
Filesystem Size Used Avail Use% Mounted on /dev/md0 7.9G 146M 7.4G 2% /srv/raid-0
mdadm --create
erfordert mehrere Parameter: den Namen des zu erstellenden Volumes (/dev/md*
, wobei MD Multiple Device bedeutet), die RAID-Stufe, die Anzahl der Platten (die in jedem Fall angegeben werden muss, obwohl dies nur bei RAID-1 oder höher Sinn macht) und die zu verwendenden physischen Laufwerke. Nachdem das Gerät erstellt ist, können wir es wie eine normale Partition verwenden, auf ihm ein Dateisystem einrichten, dieses Dateisystem einhängen und so weiter. Man beachte, dass unsere Einrichtung eines RAID-0-Volumes auf md0
nur Zufall ist, und dass die Nummerierung der Anordnung nicht der gewählten Redundanzstufe entsprechen muss. Man kann auch einen benannten RAID-Verbund erstellen, indem man mdadm
Parameter wie /dev/md/linear
statt /dev/md0
mitgibt.
#
mdadm --create /dev/md1 --level=1 --raid-devices=2 /dev/sdd2 /dev/sde
mdadm: Note: this array has metadata at the start and may not be suitable as a boot device. If you plan to store '/boot' on this device please ensure that your boot-loader understands md/v1.x metadata, or use --metadata=0.90 mdadm: largest drive (/dev/sdd2) exceeds size (4192192K) by more than 1% Continue creating array?
y
mdadm: Defaulting to version 1.2 metadata mdadm: array /dev/md1 started. #
mdadm --query /dev/md1
/dev/md1: 4.00GiB raid1 2 devices, 0 spares. Use mdadm --detail for more detail. #
mdadm --detail /dev/md1
/dev/md1: Version : 1.2 Creation Time : Thu Jan 17 16:13:04 2013 Raid Level : raid1 Array Size : 4192192 (4.00 GiB 4.29 GB) Used Dev Size : 4192192 (4.00 GiB 4.29 GB) Raid Devices : 2 Total Devices : 2 Persistence : Superblock is persistent Update Time : Thu Jan 17 16:13:04 2013 State : clean, resyncing (PENDING) Active Devices : 2 Working Devices : 2 Failed Devices : 0 Spare Devices : 0 Name : mirwiz:1 (local to host mirwiz) UUID : 6ec558ca:0c2c04a0:19bca283:95f67464 Events : 0 Number Major Minor RaidDevice State 0 8 50 0 active sync /dev/sdd2 1 8 64 1 active sync /dev/sde #
mdadm --detail /dev/md1
/dev/md1: [...] State : clean [...]
mdadm
fest, dass die physischen Komponenten von unterschiedlicher Größe sind; da dies bedeutet, dass auf der größeren Komponente einiger Platz verloren geht, ist eine Bestätigung erforderlich.
/dev/md1
benutzt werden kann, dass auf ihm ein Dateisystem erstellt werden kann, und dass Daten auf ihm abgelegt werden können.
mdadm
, genauer gesagt mit seiner Option --fail
, lässt sich ein derartiger Plattenausfall simulieren:
#
mdadm /dev/md1 --fail /dev/sde
mdadm: set /dev/sde faulty in /dev/md1 #
mdadm --detail /dev/md1
/dev/md1: [...] Update Time : Thu Jan 17 16:14:09 2013 State : active, degraded Active Devices : 1 Working Devices : 1 Failed Devices : 1 Spare Devices : 0 Name : mirwiz:1 (local to host mirwiz) UUID : 6ec558ca:0c2c04a0:19bca283:95f67464 Events : 19 Number Major Minor RaidDevice State 0 8 50 0 active sync /dev/sdd2 1 0 0 1 removed 1 8 64 - faulty spare /dev/sde
sdd
ebenfalls ausfallen, wären die Daten verloren. Wir möchten dieses Risiko vermeiden und werden daher die ausgefallene Platte durch eine neue, sdf
, ersetzen:
#
mdadm /dev/md1 --add /dev/sdf
mdadm: added /dev/sdf #
mdadm --detail /dev/md1
/dev/md1: [...] Raid Devices : 2 Total Devices : 3 Persistence : Superblock is persistent Update Time : Thu Jan 17 16:15:32 2013 State : clean, degraded, recovering Active Devices : 1 Working Devices : 2 Failed Devices : 1 Spare Devices : 1 Rebuild Status : 28% complete Name : mirwiz:1 (local to host mirwiz) UUID : 6ec558ca:0c2c04a0:19bca283:95f67464 Events : 26 Number Major Minor RaidDevice State 0 8 50 0 active sync /dev/sdd2 2 8 80 1 spare rebuilding /dev/sdf 1 8 64 - faulty spare /dev/sde #
[...]
[...] #
mdadm --detail /dev/md1
/dev/md1: [...] Update Time : Thu Jan 17 16:16:36 2013 State : clean Active Devices : 2 Working Devices : 2 Failed Devices : 1 Spare Devices : 0 Name : mirwiz:1 (local to host mirwiz) UUID : 6ec558ca:0c2c04a0:19bca283:95f67464 Events : 41 Number Major Minor RaidDevice State 0 8 50 0 active sync /dev/sdd2 2 8 80 1 active sync /dev/sdf 1 8 64 - faulty spare /dev/sde
sde
aus der Anordnung entfernt werden wird, um so zu einem typischen RAID-Spiegel auf zwei Platten zu gelangen:
#
mdadm /dev/md1 --remove /dev/sde
mdadm: hot removed /dev/sde from /dev/md1 #
mdadm --detail /dev/md1
/dev/md1: [...] Number Major Minor RaidDevice State 0 8 98 0 active sync /dev/sdg2 1 8 128 1 active sync /dev/sdi
sde
tatsächlich stattgefunden hätte (statt ihn nur zu simulieren) und das System neu gestartet worden wäre, ohne die Platte sde
zu entfernen, würde diese Platte möglicherweise wieder funktionieren, da sie während des Neustarts überprüft worden wäre. Der Kernel hätte dann drei physische Komponenten, von denen jede angeblich eine Hälfte desselben RAID-Volumes enthält. Weitere Verwirrung könnte entstehen, wenn RAID-Datenträger von zwei Servern auf einem zusammengefasst werden. Falls diese Anordnungen vor ihrem Umzug normal funktionierten, wäre der Kernel in der Lage, die Paare korrekt zu erkennen und neu zusammenzustellen. Falls die verlegten Platten jedoch auf dem vorherigen Server zu einem md1
zusammengefasst waren, und der jetzige Server bereits ein md1
hat, würde einer der Spiegel umbenannt werden.
/etc/mdadm/mdadm.conf
zu editieren, von der hier ein Beispiel gezeigt wird:
Beispiel 12.1. Konfigurationsdatei mdadm
# mdadm.conf # # Please refer to mdadm.conf(5) for information about this file. # # by default (built-in), scan all partitions (/proc/partitions) and all # containers for MD superblocks. alternatively, specify devices to scan, using # wildcards if desired. DEVICE /dev/sd* # auto-create devices with Debian standard permissions CREATE owner=root group=disk mode=0660 auto=yes # automatically tag new arrays as belonging to the local system HOMEHOST <system> # instruct the monitoring daemon where to send mail alerts MAILADDR root # definitions of existing MD arrays ARRAY /dev/md0 metadata=1.2 name=mirwiz:0 UUID=bb085b35:28e821bd:20d697c9:650152bb ARRAY /dev/md1 metadata=1.2 name=mirwiz:1 UUID=6ec558ca:0c2c04a0:19bca283:95f67464 # This configuration was auto-generated on Thu, 17 Jan 2013 16:21:01 +0100 # by mkconf 3.2.5-3
DEVICE
, mit der die Geräte aufgelistet werden, bei denen das System beim Start selbstständig nach Komponenten des RAID-Volumes suchen soll. In unserem Beispiel haben wir die Voreinstellung partitions containers
durch eine eindeutige Liste mit Gerätedateien ersetzt, da wir uns entschieden haben, für einige Datenträger ganze Platten und nicht nur Partitionen zu verwenden.
/dev/md*
).
#
mdadm --misc --detail --brief /dev/md?
ARRAY /dev/md0 metadata=1.2 name=mirwiz:0 UUID=bb085b35:28e821bd:20d697c9:650152bb ARRAY /dev/md1 metadata=1.2 name=mirwiz:1 UUID=6ec558ca:0c2c94a0:19bca283:95f6746
/dev
-Hierarchie, so dass nicht die Gefahr besteht, dass sie direkt benutzt werden.
/dev
, und es kann wie jede andere physische Partition verwendet werden (am häufigsten, um ein Dateisystem oder Auslagerungsspeicher aufzunehmen).
sdb
eine Partition sdb2
, 4 GB;
sdc
eine Partition sdc3
, 3 GB;
sdd
, 4 GB, vollständig verfügbar;
sdf
eine Partition sdf1
, 4 GB; und eine Partition sdf2
, 5 GB.
sdb
und sdf
schneller als die anderen beiden sind.
pvcreate
die physischen Volumes:
#
pvdisplay
#
pvcreate /dev/sdb2
Writing physical volume data to disk "/dev/sdb2" Physical volume "/dev/sdb2" successfully created #
pvdisplay
"/dev/sdb2" is a new physical volume of "4.00 GiB" --- NEW Physical volume --- PV Name /dev/sdb2 VG Name PV Size 4.00 GiB Allocatable NO PE Size 0 Total PE 0 Free PE 0 Allocated PE 0 PV UUID 0zuiQQ-j1Oe-P593-4tsN-9FGy-TY0d-Quz31I #
for i in sdc3 sdd sdf1 sdf2 ; do pvcreate /dev/$i ; done
Writing physical volume data to disk "/dev/sdc3" Physical volume "/dev/sdc3" successfully created Writing physical volume data to disk "/dev/sdd" Physical volume "/dev/sdd" successfully created Writing physical volume data to disk "/dev/sdf1" Physical volume "/dev/sdf1" successfully created Writing physical volume data to disk "/dev/sdf2" Physical volume "/dev/sdf2" successfully created #
pvdisplay -C
PV VG Fmt Attr PSize PFree /dev/sdb2 lvm2 a-- 4.00g 4.00g /dev/sdc3 lvm2 a-- 3.09g 3.09g /dev/sdd lvm2 a-- 4.00g 4.00g /dev/sdf1 lvm2 a-- 4.10g 4.10g /dev/sdf2 lvm2 a-- 5.22g 5.22g
pvdisplay
die bestehenden PVs in zwei möglichen Ausgabeformaten auf.
vgcreate
zu VGs zusammenfügen. Dabei nehmen wir nur PVs von den schnellen Platten in eine VG namens vg_critical
auf; die andere VG, vg_normal
, enthält dagegen auch langsamere Komponenten.
#
vgdisplay
No volume groups found #
vgcreate vg_critical /dev/sdb2 /dev/sdf1
Volume group "vg_critical" successfully created #
vgdisplay
--- Volume group --- VG Name vg_critical System ID Format lvm2 Metadata Areas 2 Metadata Sequence No 1 VG Access read/write VG Status resizable MAX LV 0 Cur LV 0 Open LV 0 Max PV 0 Cur PV 2 Act PV 2 VG Size 8.09 GiB PE Size 4.00 MiB Total PE 2071 Alloc PE / Size 0 / 0 Free PE / Size 2071 / 8.09 GiB VG UUID bpq7zO-PzPD-R7HW-V8eN-c10c-S32h-f6rKqp #
vgcreate vg_normal /dev/sdc3 /dev/sdd /dev/sdf2
Volume group "vg_normal" successfully created #
vgdisplay -C
VG #PV #LV #SN Attr VSize VFree vg_critical 2 0 0 wz--n- 8.09g 8.09g vg_normal 3 0 0 wz--n- 12.30g 12.30g
vgdisplay
kann zwischen zwei Ausgabeformaten gewählt werden). Man beachte, dass es durchaus möglich ist, zwei Partitionen derselben physischen Platte in zwei unterschiedlichen VGs zu verwenden. Außerdem beachte man, dass wir bei der Benennung unserer VGs zwar das Präfix vg_
benutzt haben, dass dies aber lediglich eine Gewohnheit ist.
lvcreate
und einer etwas komplizierteren Syntax:
#
lvdisplay
#
lvcreate -n lv_files -L 5G vg_critical
Logical volume "lv_files" created #
lvdisplay
--- Logical volume --- LV Path /dev/vg_critical/lv_files LV Name lv_files VG Name vg_critical LV UUID J3V0oE-cBYO-KyDe-5e0m-3f70-nv0S-kCWbpT LV Write Access read/write LV Creation host, time mirwiz, 2013-01-17 17:05:13 +0100 LV Status available # open 0 LV Size 5.00 GiB Current LE 1280 Segments 2 Allocation inherit Read ahead sectors auto - currently set to 256 Block device 253:0 #
lvcreate -n lv_base -L 1G vg_critical
Logical volume "lv_base" created #
lvcreate -n lv_backups -L 12G vg_normal
Logical volume "lv_backups" created #
lvdisplay -C
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert lv_base vg_critical -wi-a--- 1.00g lv_files vg_critical -wi-a--- 5.00g lv_backups vg_normal -wi-a--- 12.00g
lvcreate
übergeben werden. Der Name des zu erstellenden LV wird mit der Option -n
festgelegt und seine Größe im Allgemeinen mit der Option -L
. Wir müssen dem Befehl außerdem natürlich mitteilen, auf welche VG er angewendet werden soll. Dazu dient der letzte Parameter der Befehlszeile.
/dev/mapper/
:
#
ls -l /dev/mapper
total 0 crw------T 1 root root 10, 236 Jan 17 16:52 control lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_critical-lv_base -> ../dm-1 lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_critical-lv_files -> ../dm-0 lrwxrwxrwx 1 root root 7 Jan 17 17:05 vg_normal-lv_backups -> ../dm-2 #
ls -l /dev/dm-*
brw-rw---T 1 root disk 253, 0 Jan 17 17:05 /dev/dm-0 brw-rw---T 1 root disk 253, 1 Jan 17 17:05 /dev/dm-1 brw-rw---T 1 root disk 253, 2 Jan 17 17:05 /dev/dm-2
#
ls -l /dev/vg_critical
total 0 lrwxrwxrwx 1 root root 7 17 Jan. 17:05 lv_base -> ../dm-1 lrwxrwxrwx 1 root root 7 17 Jan. 17:05 lv_files -> ../dm-0 #
ls -l /dev/vg_normal
total 0 lrwxrwxrwx 1 root root 7 17 Jan. 17:05 lv_backups -> ../dm-2
#
mkfs.ext4 /dev/vg_normal/lv_backups
mke2fs 1.42.5 (29-Jul-2012) Filesystem label= OS type: Linux Block size=4096 (log=2) [...] Creating journal (32768 blocks): done Writing superblocks and filesystem accounting information: done #
mkdir /srv/backups
#
mount /dev/vg_normal/lv_backups /srv/backups
#
df -h /srv/backups
Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_normal-lv_backups 12G 158M 12G 2% /srv/backups #
[...]
[...] #
cat /etc/fstab
[...] /dev/vg_critical/lv_base /srv/base ext4 /dev/vg_critical/lv_files /srv/files ext4 /dev/vg_normal/lv_backups /srv/backups ext4
vg_critical
verfügbaren Platz verwendet haben, können wir lv_files
vergrößern. Zu diesem Zweck benutzen wir den Befehl lvresize
und anschließend resize2fs
, um das Dateisystem entsprechend anzupassen:
#
df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_critical-lv_files 5.0G 4.6G 146M 97% /srv/files #
lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert lv_files vg_critical -wi-ao-- 5.00g #
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree vg_critical 2 2 0 wz--n- 8.09g 2.09g #
lvresize -L 7G vg_critical/lv_files
Extending logical volume lv_files to 7.00 GB Logical volume lv_files successfully resized #
lvdisplay -C vg_critical/lv_files
LV VG Attr LSize Pool Origin Data% Move Log Copy% Convert lv_files vg_critical -wi-ao-- 7.00g #
resize2fs /dev/vg_critical/lv_files
resize2fs 1.42.5 (29-Jul-2012) Filesystem at /dev/vg_critical/lv_files is mounted on /srv/files; on-line resizing required old_desc_blocks = 1, new_desc_blocks = 1 Performing an on-line resize of /dev/vg_critical/lv_files to 1835008 (4k) blocks. The filesystem on /dev/vg_critical/lv_files is now 1835008 blocks long. #
df -h /srv/files/
Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_critical-lv_files 6.9G 4.6G 2.1G 70% /srv/files
#
df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_critical-lv_base 1008M 854M 104M 90% /srv/base #
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree vg_critical 2 2 0 wz--n- 8.09g 92.00m
sdb1
, die bisher außerhalb des LVM verwendet wurde, nur Archivdateien enthält, die nach lv_backups
verschoben werden könnten. Wir können sie dann neu verwenden und in die Volume-Gruppe integrieren und so zusätzlichen Platz gewinnen. Hierzu dient der Befehl vgextend
. Natürlich muss die Partition zunächst als physischer Datenträger eingerichtet werden. Sobald die VG erweitert worden ist, können wir ähnliche Befehle wie zuvor verwenden, um zunächst das logische Volume und anschließend das Dateisystem zu vergrößern:
#
pvcreate /dev/sdb1
Writing physical volume data to disk "/dev/sdb1" Physical volume "/dev/sdb1" successfully created #
vgextend vg_critical /dev/sdb1
Volume group "vg_critical" successfully extended #
vgdisplay -C vg_critical
VG #PV #LV #SN Attr VSize VFree vg_critical 3 2 0 wz--n- 9.09g 1.09g #
[...]
[...] #
df -h /srv/base/
Filesystem Size Used Avail Use% Mounted on /dev/mapper/vg_critical-lv_base 2.0G 854M 1.1G 45% /srv/base
sda
und sdc
angezeigt. Sie werden beide in gleicher Weise wie folgt partitioniert:
#
fdisk -l /dev/sda
Disk /dev/hda: 300.0 GB, 300090728448 bytes 255 heads, 63 sectors/track, 36483 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00039a9f Device Boot Start End Blocks Id System /dev/sda1 * 1 124 995998+ fd Linux raid autodetect /dev/sda2 125 248 996030 82 Linux swap / Solaris /dev/sda3 249 36483 291057637+ 5 Extended /dev/sda5 249 12697 99996561 fd Linux raid autodetect /dev/sda6 12698 25146 99996561 fd Linux raid autodetect /dev/sda7 25147 36483 91064421 8e Linux LVM
md0
zusammengefasst. Dieser Spiegel wird direkt dazu benutzt, das Wurzeldateisystem aufzunehmen.
sda2
und sdc2
werden als Auslagerungspartitionen verwendet und stellen insgesamt 2 GB an Auslagerungsspeicher bereit. Zusammen mit 1 GB RAM hat der Arbeitsplatzrechner somit einen reichlichen Umfang an verfügbarem Speicher.
sda5
und sdc5
wie auch sda6
und sdc6
werden zu zwei neuen RAID-1-Datenträgern namens md1
und md2
mit einer Größe von je 100 GB zusammengefasst. Diese beiden Spiegel werden als physische Datenträger für LVM initialisiert und der Volumengruppe vg_raid
zugewiesen. Diese VG umfasst somit etwa 200 GB an sicherem Speicherplatz.
sda7
und sdc7
werden direkt als physische Datenträger benutzt und einer weiteren VG namens vg_bulk
zugewiesen, die daher auch etwa 200 GB Speicherplatz bekommt.
vg_raid
erstellten LVs selbst dann erhalten bleiben, wenn eine der Platten ausfällt, wohingegen dies bei den in vg_bulk
erstellten LVs nicht der Fall ist. Andererseits werden letztere parallel auf beiden Platten bereitgestellt, wodurch höhere Lese- und Schreibgeschwindigkeiten für große Dateien möglich sind.
vg_raid
die LVs lv_usr
, lv_var
und lv_home
zur Aufnahme der entsprechenden Dateisysteme. Ein weiteres großes LV, lv_movies
, dient dazu, die endgültigen Versionen der Filme nach ihrer Editierung aufzunehmen. Die andere VG wird in ein großes lv_rushes
für Daten direkt aus den digitalen Videokameras und ein lv_tmp
für temporäre Dateien aufgeteilt. Für den Ort des Arbeitsbereichs ist eine weniger einfache Entscheidung zu treffen: während für diesen Datenträger einerseits gute Leistung erforderlich ist, fragt es sich, ob es andererseits wert ist, den Verlust der Arbeit zu riskieren, wenn während des Editierens eine Platte ausfällt. In Abhängigkeit von der Antwort auf diese Frage wird das entsprechende LV auf der einen oder der anderen VG erstellt.
/usr/
enthält, problemlos vergrößert werden.